Proportional Hazards Regression in Epidemiologic Follow-up Studies

协变量 混淆 比例危险模型 回归分析 医学 回归 统计 参数统计 比例(比率) 危害 人口学 计量经济学 数学 量子力学 物理 社会学 有机化学 化学
作者
John Cologne,Wan‐Ling Hsu,Robert D. Abbott,Waka Ohishi,Eric J. Grant,Saeko Fujiwara,Harry M. Cullings
出处
期刊:Epidemiology [Lippincott Williams & Wilkins]
卷期号:23 (4): 565-573 被引量:108
标识
DOI:10.1097/ede.0b013e318253e418
摘要

In epidemiologic cohort studies of chronic diseases, such as heart disease or cancer, confounding by age can bias the estimated effects of risk factors under study. With Cox proportional-hazards regression modeling in such studies, it would generally be recommended that chronological age be handled nonparametrically as the primary time scale. However, studies involving baseline measurements of biomarkers or other factors frequently use follow-up time since measurement as the primary time scale, with no explicit justification. The effects of age are adjusted for by modeling age at entry as a parametric covariate. Parametric adjustment raises the question of model adequacy, in that it assumes a known functional relationship between age and disease, whereas using age as the primary time scale does not. We illustrate this graphically and show intuitively why the parametric approach to age adjustment using follow-up time as the primary time scale provides a poor approximation to age-specific incidence. Adequate parametric adjustment for age could require extensive modeling, which is wasteful, given the simplicity of using age as the primary time scale. Furthermore, the underlying hazard with follow-up time based on arbitrary timing of study initiation may have no inherent meaning in terms of risk. Given the potential for biased risk estimates, age should be considered as the preferred time scale for proportional-hazards regression with epidemiologic follow-up data when confounding by age is a concern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanzu应助陶醉书琴采纳,获得10
1秒前
李爱国应助博修采纳,获得100
1秒前
dzjin发布了新的文献求助10
3秒前
路过的萌新关注了科研通微信公众号
3秒前
英俊的铭应助SS1025861采纳,获得10
3秒前
bhfhq完成签到,获得积分10
5秒前
万事屋完成签到 ,获得积分10
7秒前
Layace完成签到 ,获得积分10
7秒前
在水一方应助羊羊r采纳,获得10
8秒前
Hello应助海蓝鲸采纳,获得10
8秒前
天涯赤子完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
12秒前
闪闪半芹发布了新的文献求助10
12秒前
13秒前
13秒前
Elaine发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
柚子发布了新的文献求助10
18秒前
故意的电灯胆完成签到,获得积分10
18秒前
18秒前
奥利奥完成签到,获得积分10
19秒前
慕青应助Lakebaikal采纳,获得10
20秒前
焓哒发布了新的文献求助10
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
21秒前
jjy完成签到,获得积分10
21秒前
今后应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
22秒前
aaaaa完成签到,获得积分10
22秒前
22秒前
FashionBoy应助科研通管家采纳,获得30
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675455
求助须知:如何正确求助?哪些是违规求助? 3230256
关于积分的说明 9789445
捐赠科研通 2941180
什么是DOI,文献DOI怎么找? 1612331
邀请新用户注册赠送积分活动 761100
科研通“疑难数据库(出版商)”最低求助积分说明 736632