摘要
Pediatric PulmonologyVolume 30, Issue 5 p. 413-424 State of the Art Mouse models of chronic lung infection with Pseudomonas Aeruginosa: Models for the study of cystic fibrosis Peter K. Stotland MSC, Peter K. Stotland MSC McGill Centre for the Study of Host Resistance, Montreal General Hospital Research Institute and Department of Medicine, McGill University, Montreal, Quebec, CanadaSearch for more papers by this authorDanuta Radzioch PhD, Danuta Radzioch PhD McGill Centre for the Study of Host Resistance, Montreal General Hospital Research Institute and Department of Medicine, McGill University, Montreal, Quebec, CanadaSearch for more papers by this authorMary M. Stevenson PhD, Corresponding Author Mary M. Stevenson PhD [email protected] McGill Centre for the Study of Host Resistance, Montreal General Hospital Research Institute and Department of Medicine, McGill University, Montreal, Quebec, CanadaMontreal General Hospital Research Institute, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, CanadaSearch for more papers by this author Peter K. Stotland MSC, Peter K. Stotland MSC McGill Centre for the Study of Host Resistance, Montreal General Hospital Research Institute and Department of Medicine, McGill University, Montreal, Quebec, CanadaSearch for more papers by this authorDanuta Radzioch PhD, Danuta Radzioch PhD McGill Centre for the Study of Host Resistance, Montreal General Hospital Research Institute and Department of Medicine, McGill University, Montreal, Quebec, CanadaSearch for more papers by this authorMary M. Stevenson PhD, Corresponding Author Mary M. Stevenson PhD [email protected] McGill Centre for the Study of Host Resistance, Montreal General Hospital Research Institute and Department of Medicine, McGill University, Montreal, Quebec, CanadaMontreal General Hospital Research Institute, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, CanadaSearch for more papers by this author First published: 30 October 2000 https://doi.org/10.1002/1099-0496(200011)30:5<413::AID-PPUL8>3.0.CO;2-9Citations: 43AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The discovery of the CFTR gene in 1989 has lead to rapid progress in understanding the molecular basis of cystic fibrosis (CF) and the biological properties of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. However, more than 10 years later, recurrent lung infections with Pseudomonas aeruginosa, which lead to chronic lung disease and eventual respiratory failure, remain the major cause of morbidity and mortality among CF patients. A distinguishing feature of lung disease in CF is an exaggerated and persistent inflammatory response, characterized by the accumulation of excessive numbers of neutrophils and dysregulated cytokine production. The events leading to the establishment of lung infection with P. aeruginosa, especially the inflammatory and immunological events, and the relation between the CF defect and infection, remain largely undefined. Progress in this area has been hampered by the lack of a suitable animal model. An exciting achievement in the past few years has been the development of a number of variants of CFTR-deficient mice which exhibit defective cAMP-mediated Cl− conductance and have a range of clinical phenotypes from mild to severe. In parallel, a model of chronic P. aeruginosa lung infection has been established in genetically and immunologically well-defined inbred mouse strains which differ in susceptibility to this infection in the lung. BALB/c mice are resistant, while DBA/2 mice are extremely susceptible, with high mortality within 3 days of infection. C57BL/6 and A/J mice are relatively susceptible and experience low mortality. Furthermore, the bacterial load correlates with the magnitude and quality of the inflammatory response in the infected lungs of BALB/c and C57BL/6 mice. Although results of infection studies in CFTR-deficient mice have been variable, C57BL/6-Cftrm1UNC/Cftrm1UNC knockout mice compared to littermate control mice are highly susceptible to chronic P. aeruginosa infection in the lung. The availability of CFTR knockout mice and non-CF inbred mice differing in susceptibility to chronic P. aeruginosa infection offers useful tools for progress in understanding the genesis of chronic P. aeruginosa infection and the ensuing inflammation in the CF lung, as well as the relation between the CF defect and infection. Information generated from these studies will provide the rationale for the development of novel immunomodulatory measures capable of ameliorating or modulating the chronic inflammation associated with CF lung disease. Pediatr Pulmonol. 2000;30:413–424. © 2000 Wiley-Liss, Inc. REFERENCES 1Davis PB, Drumm M, Konstan MW. Cystic fibrosis. Am J Respir Crit Care Med 1996; 154: 1229–1256. 10.1164/ajrccm.154.5.8912731 CASPubMedWeb of Science®Google Scholar 2Debraekeleer M, Mari C, Verlingue C, Allard C, Leblanc JP, Simard F, Aubin G, Ferec C. Clinical features of cystic fibrosis patients with rare genotypes in Saguenay Lac-Saint-Jean (Quebec, Canada). Ann Genet (Paris) 1997; 40: 205–208. CASGoogle Scholar 3Andersen DH. Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathologic study. Am J Dis Child 1938; 56: 344–399. 10.1001/archpedi.1938.01980140114013 Web of Science®Google Scholar 4Davidson DJ, Porteus DJ. The genetics of cystic fibrosis lung disease. Thorax 1998; 53: 389–397. 10.1136/thx.53.5.389 CASPubMedWeb of Science®Google Scholar 5Welsh JM, Tsui LC, Boat RF, Beadet AL. Cystic fibrosis. In: C Scriver, AL Beadet, WS Sly, D Valle, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 1995. p 3799–3876. 10.1038/scientificamerican1295-52 Google Scholar 6Kerem E. The role of Pseudomonas aeruginosa in the pathogenesis of lung disease in cystic fibrosis—more questions than answers. Pediatr Pulmonol [Suppl] 1997; 16: 265–266. 10.1002/ppul.19502308137 CASPubMedGoogle Scholar 7Cripps AW, Dunkley ML, Clancy RC, Kyd J. Pulmonary immunity to Pseudomonas aeruginosa. Immunol Cell Biol 1995; 73: 418–424. 10.1038/icb.1995.65 CASPubMedWeb of Science®Google Scholar 8Koch C, Høiby N. Pathogenesis of cystic fibrosis. Lancet 1993; 341: 1065–1069. 10.1016/0140-6736(93)92422-P CASPubMedWeb of Science®Google Scholar 9Berger M. Inflammation in the lung in cystic fibrosis: a vicious cycle that does more harm than good? Clin Rev Allergy 1991; 9: 119–142. CASPubMedWeb of Science®Google Scholar 10Berger M, Konstan MW. Immunopathogenesis of cystic fibrosis lung disease. In: J Yankaskas, M Knowles, editors. Cystic fibrosis in adults. Philadelphia: Lippincott-Raven; 1999. p 115–143. Google Scholar 11Konstan MW, Berger M. Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmonol 1997; 24: 137–142. 10.1002/(SICI)1099-0496(199708)24:2<137::AID-PPUL13>3.0.CO;2-3 CASPubMedWeb of Science®Google Scholar 12Khan TA, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 1995; 151: 1075–1082. CASPubMedWeb of Science®Google Scholar 13Armstrong DS, Grimwood K, Olinsky A, Phelan PD. Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. Br Med J [Clin Res] 1995; 310: 1571–1573. 10.1136/bmj.310.6994.1571 CASPubMedWeb of Science®Google Scholar 14Armstrong DS, Grimwwod K, Carlin JB, Carzino R, Gutierrez JP, Hull J, Olinsky A, Phelan EA, Robertson CF, Phelan PD. Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 1997; 156: 1197–1204. 10.1164/ajrccm.156.4.96-11058 CASPubMedWeb of Science®Google Scholar 15Konstan MW, Byard PJ, Hoppel CH, Davis PB. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 1995; 332: 848–854. 10.1056/NEJM199503303321303 CASPubMedWeb of Science®Google Scholar 16Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC. Evidence for periciliar liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airway disease. Cell 1998; 95: 1005–1015. 10.1016/S0092-8674(00)81724-9 CASPubMedWeb of Science®Google Scholar 17Zabner J, Smith J, Karp P, Widdicombe J, Welsh M. Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelial cells in vitro. Mol Cell 1998; 2: 397–403. 10.1016/S1097-2765(00)80284-1 CASPubMedWeb of Science®Google Scholar 18Imundo L, Barasch J, Prince A, Al-Awqati Q. Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc Natl Acad Sci USA 1995; 92: 3019–3023. 10.1073/pnas.92.7.3019 CASPubMedWeb of Science®Google Scholar 19Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, Goldberg JB. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 1996; 271: 64–67. 10.1126/science.271.5245.64 CASPubMedWeb of Science®Google Scholar 20Santis G, Osborne L, Knight RA, Hodson ME. Independent genetic determinants of pancreatic and pulmonary status in cystic fibrosis. Lancet 1990; 336: 1081–1084. 10.1016/0140-6736(90)92566-Z CASPubMedWeb of Science®Google Scholar 21Hamosh A, Corey M. Correlation between genotype and phenotype in patients with cystic fibrosis. The cystic fibrosis genotype-phenotype consortium. N Engl J Med 1993; 329: 1308–1313. 10.1056/NEJM199310283291804 PubMedWeb of Science®Google Scholar 22Santis G, Osborne L, Knight R, Smith M, Davison R, Hodson M. Genotype-phenotype relationship in cystic fibrosis: results from the study of monozygotic and dizygotic twins with cystic fibrosis. Pediatr Pulmonol [Suppl] 1992; 14: 239. PubMedWeb of Science®Google Scholar 23Rozmahel R, Wilschanski M, Matin A, Plyte S, Oliver M, Auerbach W, Moore A, Forstner J, Durie P, Nadeau J, Bear C, Tsui LC. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nat Genet 1996; 12: 280–287. 10.1038/ng0396-280 CASPubMedWeb of Science®Google Scholar 24Johansen HK. Potential of preventing Pseudomonas aeruginosa lung infections in cystic fibrosis patients: experimental studies in animals. Acta Pathol Microbiol Immunol Scand 1996; 104: 5–42. 10.1111/j.1600-0463.1996.tb05581.x Web of Science®Google Scholar 25Nacucchio MC, Cerquetti MC, Meiss RP, Sordelli DO. Role of agar beads in the pathogenicity of Pseudomonas aeruginosa in the rat respiratory tract. Pediatr Res 1984; 18: 295–296. 10.1203/00006450-198403000-00018 CASPubMedWeb of Science®Google Scholar 26Cash HA, Woods DE, McCullough B, Johanson WE, Bass JA. A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis 1979; 119: 453–459. CASPubMedWeb of Science®Google Scholar 27Pedersen SS, Shand GH, Hansen BL, Hansen GN. Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. Acta Pathol Microbiol Scand 1990; 98: 203–211. 10.1111/j.1699-0463.1990.tb01023.x PubMedWeb of Science®Google Scholar 28Klinger JD, Cash HA, Wood RE, Miler JJ. Protective immunization against chronic Pseudomonas aeruginosa pulmonary infection in rats. Infect Immun 1983; 39: 1377–1384. 10.1128/IAI.39.3.1377-1384.1983 CASPubMedWeb of Science®Google Scholar 29Woods DE, Byron LE. Studies on the ability of alginate to act as a protective immunogen against infection with Pseudomonas aeruginosa in animals. J Infect Dis 1985; 151: 581–588. 10.1093/infdis/151.4.581 CASPubMedWeb of Science®Google Scholar 30Johansen HK, Espersen F, Pedersen SS, Hougen HP, Rygaard J, Høiby N. Chronic Pseudomonas aeruginosa lung infection in normal and athymic rats. Acta Pathol Microbiol Immunol Scand 1993; 101: 207–225. 10.1111/j.1699-0463.1993.tb00103.x PubMedWeb of Science®Google Scholar 31Johansen HK, Hougen HP, Rygaard J, Høiby N. Interferon-gamma (IFN-γ) treatment decreases the inflammatory response in chronic Pseudomonas aeruginosa pneumonia in rats. Clin Exp Immunol 1996; 103: 212–218. 10.1046/j.1365-2249.1996.d01-618.x CASPubMedWeb of Science®Google Scholar 32Pier GB, Small GJ, Warren HB. Protection against mucoid Pseudomonas aeruginosa in rodent models of endobronchial infection. Science 1990; 249: 537–540. 10.1126/science.2116663 CASPubMedWeb of Science®Google Scholar 33Terashima T, Matsubara H, Nakama M, Sakamaki F, Waki Y, Soejima K, Tasaka S, Nakamura H, Sayama K, Ishizaka A, Kanazawa M. Local Pseudomonas instillation induces contralateral lung injury and plasma cytokines. Am J Respir Crit Care Med 1996; 153: 1600–1605. 10.1164/ajrccm.153.5.8630608 PubMedWeb of Science®Google Scholar 34Pennington JE, Hickey WF, Blackwood LL, Arnaut MA. Active immunization with lipopolysaccharide Pseudomonas antigen for chronic Pseudomonas bronchopneumonia in guinea pigs. J Clin Invest 1981; 68: 1140–1148. 10.1172/JCI110358 CASPubMedWeb of Science®Google Scholar 35Thomassen MJ, Klinger JD, Winnie GB, Wood RE, Burtner C, Tomashefski JF, Horowitz JG, Tandler B. Pulmonary cellular response to chronic irritation and chronic Pseudomonas aeruginosa pneumonia in cats. Infect Immun 1984; 45: 741–747. CASPubMedWeb of Science®Google Scholar 36Cheung AT, Moss RB, Leong AB, Novick WJ. Chronic Pseudomonas aeruginosa endobronchitis in rhesus monkeys. I. Effects of pentoxifylline on neutrophil influx. J Med Primatol 1992; 21: 357–362. 10.1111/j.1600-0684.1992.tb00604.x CASPubMedWeb of Science®Google Scholar 37Cheung AT, Moss RB, Kurland G, Leong AB, Novick WJ. Chronic Pseudomonas aeruginosa endobronchitis in rhesus monkeys. II. A histopathologic analysis. J Med Primatol 1993; 22: 257–262. 10.1111/j.1600-0684.1993.tb00666.x CASPubMedWeb of Science®Google Scholar 38Starke JR, Edwards MS, Langston C, Baker CJ. A mouse model of chronic pulmonary infection with Pseudomonas aeruginosa and Pseudomonas cepacia. Pediatr Res 1987; 22: 698–702. 10.1203/00006450-198712000-00017 CASPubMedWeb of Science®Google Scholar 39Morissette C, Skamene E, Gervais F. Endobronchial inflammation following Pseudomonas aeruginosa infection in resistant and susceptible strains of mice. Infect Immun 1995; 63: 1718–1724. 10.1128/IAI.63.5.1718-1724.1995 CASPubMedWeb of Science®Google Scholar 40Stevenson MM, Kondratieva TK, Apt AS, Tam MF, Skamene E. In vitro and in vivo T cell responses in mice during bronchopulmonary infection with mucoid Pseudomonas aeruginosa. Clin Exp Immunol 1995; 99: 98–105. 10.1111/j.1365-2249.1995.tb03478.x CASPubMedWeb of Science®Google Scholar 41Tam MF, Snipes GJ, Stevenson MM. Characterization of chronic bronchopulmonary Pseudomonas aeruginosa infection in resistant and susceptible inbred mice. Am J Respir Cell Mol Biol 1999; 20: 710–719. 10.1165/ajrcmb.20.4.3223 CASPubMedWeb of Science®Google Scholar 42Sapru K, Stotland PK, Stevenson MM. Quantitative and qualitative differences in bronchopulmonary inflammatory cells in Pseudomonas aeruginosa-resistant and susceptible mice. Clin Exp Immunol 1999; 115: 103–109. 10.1046/j.1365-2249.1999.00762.x CASPubMedWeb of Science®Google Scholar 43O'Garra A. Cytokines induce the development of functionally heterogenous T helper cell subsets. Immunity 1998; 8: 275–283. 10.1016/S1074-7613(00)80533-6 CASPubMedWeb of Science®Google Scholar 44Gosselin D, DeSanctis J, Boule M, Skamene E, Matouk C, Radzioch D. Role of tumor necrosis factor alpha in innate resistance to mouse pulmonary infection with Pseudomonas aeruginosa. Infect Immun 1995; 63: 3272–3278. 10.1128/IAI.63.9.3272-3278.1995 CASPubMedWeb of Science®Google Scholar 45Kelly TJ, Drumm ML. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J Clin Invest 1998; 102: 1200–1207. 10.1172/JCI2357 PubMedWeb of Science®Google Scholar 46Grasemann H, Michler E, Wallot M, Ratjen F. Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol 1997; 24: 173–177. 10.1002/(SICI)1099-0496(199709)24:3<173::AID-PPUL2>3.0.CO;2-O CASPubMedWeb of Science®Google Scholar 47Meng Q, Springall DR, Bishop AE, Morgan K, Evans TJ, Habib S, Gruentert DC, Gyi KM, Hodson ME, Yacoug TJ, Polak JM. Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility in infection with cystic fibrosis. J Pathol 1998; 184: 323–331. 10.1002/(SICI)1096-9896(199803)184:3<323::AID-PATH2>3.0.CO;2-2 CASPubMedWeb of Science®Google Scholar 48Döring G, Krogh-Johanssen H, Weidinger S, Høiby N. Allotypes of α1-antitrypsin in patients with cystic fibrosis, homozygous and heterozygous for DeltaF508. Pediatr Pulmonol 1994; 18: 3–7. 10.1002/ppul.1950180104 CASPubMedWeb of Science®Google Scholar 49Crystal RG. α1-antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J Clin Invest 1990; 85: 1343–1352. 10.1172/JCI114578 CASPubMedWeb of Science®Google Scholar 50Vidal SM, Malo D, Vogan K, Skamene E, Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 1993; 73: 469–485. 10.1016/0092-8674(93)90135-D CASPubMedWeb of Science®Google Scholar 51Cellier MG, Govoni G, Vidal S, Kwan T, Groulx N, Liu J, Sanchez F, Skamene E, Schurr E, Gros P. Human natural resistance-associated macrophage protein, cDNA cloning, chromosomal mapping, genomic organization and tissue specific expression. J Exp Med 1994; 180: 1741–1752. 10.1084/jem.180.5.1741 CASPubMedWeb of Science®Google Scholar 52Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH. An animal model for cystic fibrosis made by gene targeting. Science 1992; 257: 1083–1088. 10.1126/science.257.5073.1083 CASPubMedWeb of Science®Google Scholar 53Clarke LL, Grubb BR, Gabriel SE, Smithies O, Koller BH, Boucher RC. Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science 1992; 257: 1125–1128. 10.1126/science.257.5073.1125 CASPubMedWeb of Science®Google Scholar 54Kent G, Oliver M, Foskett JK, Frndova H, Durie P, Forstner J, Forstner GG, Riordan JR, Percy D, Buchwald M. Phenotypic abnormalities in long-term surviving cystic fibrosis mice. Pediatr Res 1996; 40: 223–241. 10.1203/00006450-199608000-00008 Web of Science®Google Scholar 55Dorin JR, Dickinson P, Alton EW, Smith SN, Geddes DM, Stevenson BJ, Kimber WL, Fleming S, Clarke AR, Hooper ML, Anderson L, Beddington RSP, Porteous DJ. Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 1992; 359: 211–215. 10.1038/359211a0 CASPubMedWeb of Science®Google Scholar 56Ratcliff R, Evans MJ, Cuthbert AW, MacVinish LJ, Foster D, Anderson JR, Colledge WH. Production of a severe cystic fibrosis mutation in mice by gene targeting. Nat Genet 1993; 4: 35–41. 10.1038/ng0593-35 CASPubMedWeb of Science®Google Scholar 57O'Neal WK, Hasty P, McCray PB, Casey B, Rivera-Pérez J, Welsh MJ, Beaudet AL, Bradly A. A severe phenotype in mice with a duplication of exon 3 in the cystic fibrosis locus. Hum Mol Genet 1993; 2: 1561–1569. 10.1093/hmg/2.10.1561 CASPubMedWeb of Science®Google Scholar 58van Doorninck JH, French PJ, Verbeek E, Peters RH, Morreau H, Bijman J, Scholte BJ. A mouse model for the cystic fibrosis ΔF508 mutation. EMBO J 14;1995: 4403–4411. CASPubMedWeb of Science®Google Scholar 59Colledge WH, Abella BS, Southern KW, Ratcliff R, Jiang C, Cheng SH, MacVinish LJ, Anderson JR, Cuthbert AW, Evans MJ. Generation and characterization of a ΔF508 cystic fibrosis mouse model. Nat Genet 10:1995: 445–451. 10.1038/ng0895-445 CASPubMedWeb of Science®Google Scholar 60Delany SJ, Alton EW, Smith SN, Lunn DP, Farley R, Lovelock PK, Thomson SA, Hume DA, Lamb D, Porteous DJ, Doring JR, Wainwright BJ. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations. EMBO J 15;1996: 955–963. PubMedWeb of Science®Google Scholar 61Kent G, Iles R, Bear CE, Huan LJ, Griesenbach U, McKerlie C, Frndova H, Ackerly C, Gosselin D, Radzioch D, O'Brodovich H, Tsui LC, Buchwald M, Tanswell AK. Lung disease in mice with cystic fibrosis. J Clin Invest 1997; 100: 3060–3069. 10.1172/JCI119861 CASPubMedWeb of Science®Google Scholar 62Snouwaert JN, Brigman KK, Latour AM, Iraj E, Schwab U, Gilmour MI, Koller BH. A murine model for cystic fibrosis. Am J Respir Crit Care Med 1995; 151: 59–64. 10.1164/ajrccm/151.3_Pt_2.S59 CASPubMedWeb of Science®Google Scholar 63Cressman VL, Hicks EM, Funkhouser WK, Backlund DC, Koller BH. The relationship of chronic mucin secretion to airway disease in normal and CFTR-deficient mice. Am J Respir Cell Mol Biol 1998; 19: 853–866. 10.1165/ajrcmb.19.6.3194 CASPubMedWeb of Science®Google Scholar 64Davidson DJ, Dorin JR, McLachlan G, Ranaldi V, Lamb D, Doherty C, Govan J, Porteous DJ. Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nat Genet 1995; 9: 351–357. 10.1038/ng0495-351 CASPubMedWeb of Science®Google Scholar 65van Heeckeran A, Walenga R, Konstan MW, Bonfield T, Davis PB, Ferkol T. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with P. aeruginosa. J Clin Invest 1997; 100: 2810–2815. 10.1172/JCI119828 PubMedGoogle Scholar 66Gosselin D, Stevenson MM, Cowley EA, Griesenbach U, Eidelman DH, Boulé M, Tam MF, Kent G, Skamene E, Tsui LC, Radzioch D. Impaired ability of Cftr knockout mice to control lung infection with P. aeruginosa. Am J Respir Crit Care Med 1998; 152: 2111–2118. PubMedWeb of Science®Google Scholar 67Bals R, Weiner DJ, Wilson JM. The innate immune system in cystic fibrosis lung disease. J Clin Invest 1999; 103: 303–307. 10.1172/JCI6277 CASPubMedWeb of Science®Google Scholar 68Tabary O, Zahm JM, Hinnrasky J, Couetil JP, Cornillet P, Guenounou M, Gaillard D, Puchelle E, Jacquot J. Selective up-regulation of chemokine IL-8 expression in cystic fibrosis bronchial gland cells in vivo and in vitro. Am J Pathol 1998; 153: 921–930. 10.1016/S0002-9440(10)65633-7 CASPubMedWeb of Science®Google Scholar 69Tabary O, Escotte S, Couetil JP, Hubert D, Dusser D, Puchelle E, Jacquot J. Genestein inhibits constitutive and inducible NFkappaB activation and decreases IL-8 production by human cystic fibrosis bronchial gland cells. Am J Pathol 1999; 155: 473–481. 10.1016/S0002-9440(10)65143-7 CASPubMedWeb of Science®Google Scholar 70Dosanjh AK, Elashoff D, Robbins RC. The bronchoalveolar lavage fluid of cystic fibrosis lung transplant recipients demonstrates increased IL-8 and elastase and decreased IL-10. J Interferon Cytok Res 1998; 18: 851–854. 10.1089/jir.1998.18.851 CASPubMedWeb of Science®Google Scholar 71Moore KW, O'Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin 10. Annu Rev Immunol 1993; 11: 165–190. 10.1146/annurev.iy.11.040193.001121 CASPubMedWeb of Science®Google Scholar 72Tebo JM, Kim HS, Gao J, Armstrong DA, Hamilton TA. Interleukin-10 suppresses IL-10 gene transcription by inhibiting the production of class I interferon. Blood 1998; 92: 4742–4749. CASPubMedWeb of Science®Google Scholar 73Kim HS, Armstrong D, Hamilton TA, Tebo JM. IL-10 suppresses LPS-induced KC mRNA expression via a translation-dependent decrease in mRNA stability. J Leukocyte Biol 1998; 64: 33–39. 10.1002/jlb.64.1.33 CASPubMedWeb of Science®Google Scholar 74Bonfield TL, Panuska JR, Konstan MW, Hilliard KA, Hilliard JB, Ghnaim H, Berger M. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 1995; 152: 2111–2118. 10.1164/ajrccm.152.6.8520783 CASPubMedWeb of Science®Google Scholar 75Bonfield TL, Konstan MW, Burfeind P, Panuska JR, Hilliard JB, Berger M. Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol 1995; 13: 257–261. 10.1165/ajrcmb.13.3.7544594 CASPubMedWeb of Science®Google Scholar 76Moss RB, Bocian RC, Hsu YP, Dong HY, Kemna M, Wei T, Gardner P. Reduced IL-10 secretion by CD4+ T lymphocytes expressing mutant cystic fibrosis transmembrane conductance regulator (CFTR). Clin Exp Immunol 1996; 106: 374–388. 10.1046/j.1365-2249.1996.d01-826.x CASPubMedWeb of Science®Google Scholar 77Noah TL, Black HR, Cheng PW, Wood RE, Leigh MW. Nasal and bronchoalveolar lavage fluid cytokines in early cystic fibrosis. J Infect Dis 1997; 175: 638–647. 10.1093/infdis/175.3.638 CASPubMedWeb of Science®Google Scholar 78von Wichert PK, Joseph K, Müller B, Franck WM. Bronchoalveolar lavage: quantitation of intraalveolar fluid? Am Rev Respir Dis 1993; 147: 148–152. 10.1164/ajrccm/147.1.148 CASPubMedWeb of Science®Google Scholar 79Reynolds HY. Bronchoalveolar lavage. Am Rev Respir Dis 1987; 135: 250–263. PubMedWeb of Science®Google Scholar 80Rennick DM, Fort MM, Davidson NJ. Studies with IL-10 −/− mice: an overview. J Leukocyte Biol 1997; 61: 389–396. 10.1002/jlb.61.4.389 CASPubMedWeb of Science®Google Scholar 81Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Goodman RE, Standiford TJ. Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumonia. J Immunol 1995; 155: 722–729. CASPubMedWeb of Science®Google Scholar 82van der Poll T, Marchant A, Keogh CV, Goldman M, Lowry SF. Interleukin-10 impairs host defense in murine pneumococcal pneumonia. J Infect Dis 1996; 174: 994–1000. 10.1093/infdis/174.5.994 CASPubMedWeb of Science®Google Scholar 83Sawa T, Corry DB, Gropper MA, Ohara M, Kurahashi K, Wiener-Kronish JP. IL-10 improves lung injury and survival in Pseudomonas aeruginosa pneumonia. J Immunol 1997; 159: 2858–2866. CASPubMedWeb of Science®Google Scholar 84Yu H, Hanes M, Chrisp CE, Boucher JC, Deretic V. Microbial pathogenesis in cystic fibrosis—pulmonary clearance of mucoid Pseudomonas aeruginosa and inflammation in a mouse model of repeated respiratory challenge. Infect Immun 1998; 66: 280–288. CASPubMedWeb of Science®Google Scholar 85Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS, Hamilton TA. Potential anti-inflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor α, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci USA 1989; 86: 3803–3807. 10.1073/pnas.86.10.3803 CASPubMedWeb of Science®Google Scholar 86Trepicchio WL, Bozza M, Pedneault G, Dorner AJ. Recombinant human IL-11 attenuates the inflammatory response through down-regulation of proinflammatory cytokine release and nitric oxide production. J Immunol 1996; 157: 3627–3634. 10.4049/jimmunol.157.8.3627 CASPubMedWeb of Science®Google Scholar 87Minty A, Chalon P, Derocq JM, Dumont X, Guillemot JC, Kaghad M, Labit C, Leplatois P, Liauzan P, Miloux B, Minty C, Cassellas P, Loison G, Lupker J, Shire D, Ferrara P, Caput D. Interleukin 13 is a new human lymphokine regulating inflammatory and immune responses. Nature 1993; 362: 248–250. 10.1038/362248a0 CASPubMedWeb of Science®Google Scholar 88Watson ML, White AM, Campbell EM, Smith AW, Uddin J, Yoshimura T, Westwick J. Anti-inflammatory actions of interleukin 13: suppression of tumor necrosis factor-α and antigen-induced leukocyte accumulation in the guinea pig lung. Am J Respir Cell Mol Biol 1999; 20: 1007–1012. 10.1165/ajrcmb.20.5.3540 CASPubMedWeb of Science®Google Scholar 89Jain-Vora S, LeVine AM, Chroneos Z, Ross GF, Hull WM, Whitsett JA. Interleukin-4 enhances pulmonary clearance of Pseudomonas aeruginosa. Infect Immun 1998; 66: 4229–4236. CASPubMedWeb of Science®Google Scholar Citing Literature Volume30, Issue5November 2000Pages 413-424 ReferencesRelatedInformation