化学
立体化学
活动站点
生物合成
ATP合酶
酶
生物化学
作者
Reuben J. Peters,Matthew M. Ravn,Robert M. Coates,Rodney Croteau
摘要
Abietadiene synthase (AS) catalyzes two sequential, mechanistically distinct cyclizations in the conversion of geranylgeranyl diphosphate to a mixture of abietadiene double bond isomers as the initial step of resin acid biosynthesis in grand fir (Abies grandis). The first reaction converts geranylgeranyl diphosphate to the stable bicyclic intermediate (+)-copalyl diphosphate via protonation-initiated cyclization. In the second reaction, diphosphate ester ionization-initiated cyclization generates the tricyclic perhydrophenanthrene-type backbone, and is directly coupled to a 1,2-methyl migration that generates the C13 isopropyl group characteristic of the abietane family of diterpenes. Using the transition-state analogue inhibitor 14,15-dihydro-15-azageranylgeranyl diphosphate, it was demonstrated that each reaction of abietadiene synthase is carried out at a distinct active site. Mutations in two aspartate-rich motifs specifically delete one or the other activity and the location of these motifs suggests that the two active sites reside in separate domains. These mutants effectively complement each other, suggesting that the copalyl diphosphate intermediate diffuses between the two active sites in this monomeric enzyme. Free copalyl diphosphate was detected in steady-state kinetic reactions, thus conclusively demonstrating a free diffusion transfer mechanism. In addition, both mutant enzymes enhance the activity of wild-type abietadiene synthase with geranylgeranyl diphosphate as substrate. The implications of these results for the kinetic mechanism of abietadiene synthase are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI