子图同构问题
计算机科学
诱导子图同构问题
图同构
图形
理论计算机科学
集合(抽象数据类型)
数据挖掘
折线图
电压图
程序设计语言
作者
M. Kuramochi,George Karypis
标识
DOI:10.1109/icdm.2001.989534
摘要
As data mining techniques are being increasingly applied to non-traditional domains, existing approaches for finding frequent itemsets cannot be used as they cannot model the requirement of these domains. An alternate way of modeling the objects in these data sets is to use graphs. Within that model, the problem of finding frequent patterns becomes that of discovering subgraphs that occur frequently over the entire set of graphs.The authors present a computationally efficient algorithm for finding all frequent subgraphs in large graph databases. We evaluated the performance of the algorithm by experiments with synthetic datasets as well as a chemical compound dataset. The empirical results show that our algorithm scales linearly with the number of input transactions and it is able to discover frequent subgraphs from a set of graph transactions reasonably fast, even though we have to deal with computationally hard problems such as canonical labeling of graphs and subgraph isomorphism which are not necessary for traditional frequent itemset discovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI