Where Does EEG Come From and What Does It Mean?

脑电图 神经科学 心理学 认知心理学
作者
Michael X Cohen
出处
期刊:Trends in Neurosciences [Elsevier BV]
卷期号:40 (4): 208-218 被引量:555
标识
DOI:10.1016/j.tins.2017.02.004
摘要

EEG is one of the most important non-invasive brain imaging tools in neuroscience and in the clinic, but surprisingly little is known about how activity in neural circuits produces the various EEG features linked to cognition. The ‘standard model’ of EEG states that simultaneous postsynaptic potentials of neural populations produces EEG, but this explains only the existence of EEG, not the meaning of the content of the EEG signal. No ‘grand unified theories’ are presented, because there is unlikely to be a single ‘neural correlate of EEG’. More experiments, analyses, and models that span multiple spatial scales are necessary. Recent advances in neuroscience knowledge and technologies make this an ideal time for new discoveries about the origins and significances of EEG. This research will benefit fundamental neuroscience, cognitive neuroscience, clinical diagnoses, and data analysis development. Electroencephalography (EEG) has been instrumental in making discoveries about cognition, brain function, and dysfunction. However, where do EEG signals come from and what do they mean? The purpose of this paper is to argue that we know shockingly little about the answer to this question, to highlight what we do know, how important the answers are, and how modern neuroscience technologies that allow us to measure and manipulate neural circuits with high spatiotemporal accuracy might finally bring us some answers. Neural oscillations are perhaps the best feature of EEG to use as anchors because oscillations are observed and are studied at multiple spatiotemporal scales of the brain, in multiple species, and are widely implicated in cognition and in neural computations. Electroencephalography (EEG) has been instrumental in making discoveries about cognition, brain function, and dysfunction. However, where do EEG signals come from and what do they mean? The purpose of this paper is to argue that we know shockingly little about the answer to this question, to highlight what we do know, how important the answers are, and how modern neuroscience technologies that allow us to measure and manipulate neural circuits with high spatiotemporal accuracy might finally bring us some answers. Neural oscillations are perhaps the best feature of EEG to use as anchors because oscillations are observed and are studied at multiple spatiotemporal scales of the brain, in multiple species, and are widely implicated in cognition and in neural computations. the measurement of brain electrical fields via electrodes (which act as small antennas) placed on the head. The electrical fields are the result of electrochemical signals passing from one neuron to the next. When billions of these tiny signals are passed simultaneously in spatially extended and geometrically aligned neural populations, the electrical fields sum and become powerful enough to be measured from outside the head. EEG is often attributed to Hans Berger, who was trying to discover a ‘mechanism’ for extra-sensory phenomena. It was known since the late 19th century that the brain produces electrical fields, and that these fields exhibit oscillations; Berger’s great contributions included demonstrating that these fields could be measured in humans from outside the brain, and demonstrating that neural oscillations were related to cognitive phenomena such as sensory processing and solving mathematical equations. this term is used here as shorthand for an idiosyncratic spatial/temporal/spectral pattern that is associated with a particular sensory or cognitive process, similar to a ‘fingerprint’ [17]. Examples include midfrontal theta and response conflict monitoring, and posterior alpha power and spatial attention. brain function can be measured at many spatial scales, ranging from individual synapses (∼10 nm) to whole-brain networks (∼10 cm). Although neuroscience research in general spans all these spatial scales, there is little understanding of how the dynamics are related across spatial scales. Is understanding multiscale dynamics important for understanding brain function? No-one really knows, but multiscale dynamics are hypothesized to be necessary for the complexity required for higher cognitive functioning including consciousness [93]. Studying multiscale interactions presents conceptual, mathematical, and technological challenges, and scientists tend to like challenges. a microcircuit refers to a spatial scale of brain anatomical/functional organization that is larger than a single neuron but smaller than an fMRI voxel. Microcircuits can take several forms; the term ‘microcircuit’ often connotes a bundling of dozens or hundreds of cells of various classes that are more densely interconnected than they are connected to neighboring microcircuits, and that work together towards a common function [57]. Orientation-tuned columns in primate V1 is an example of a microcircuit. the EEG activity of a living brain is not flat, nor is it random. Instead, EEG is dominated by rhythms that are grouped into a small number of characteristic frequencies. These rhythms are driven by fluctuations in excitability of populations of neurons, and have complex spatiotemporal patterns that vary in amplitude, timing, and frequency. These variations are known as nonstationarities, and the general goal of cognitive electrophysiology is to understand how and why these nonstationarities are related to various cognitive and perceptual processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翁雁丝完成签到 ,获得积分10
3秒前
郭义敏完成签到,获得积分0
3秒前
gyf完成签到,获得积分10
6秒前
李保龙完成签到 ,获得积分10
7秒前
11秒前
LJJ完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
15秒前
阿姨洗铁路完成签到 ,获得积分10
20秒前
抹不掉的记忆完成签到,获得积分10
22秒前
22秒前
余杭村王小虎完成签到,获得积分10
23秒前
韭黄完成签到,获得积分20
27秒前
jeffrey完成签到,获得积分10
27秒前
Rondab应助机灵枕头采纳,获得10
33秒前
佳无夜完成签到,获得积分10
38秒前
摆哥完成签到,获得积分10
42秒前
66完成签到,获得积分10
47秒前
zlqq完成签到 ,获得积分10
47秒前
Hardskills发布了新的文献求助10
50秒前
51秒前
之_ZH完成签到 ,获得积分10
59秒前
gds2021完成签到 ,获得积分10
1分钟前
你好呀嘻嘻完成签到 ,获得积分10
1分钟前
梅特卡夫完成签到,获得积分10
1分钟前
熊雅完成签到,获得积分10
1分钟前
1分钟前
睡到自然醒完成签到 ,获得积分10
1分钟前
cis2014完成签到,获得积分10
1分钟前
独特的大有完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
xingyi完成签到,获得积分10
1分钟前
1分钟前
舒心的秋荷完成签到 ,获得积分10
1分钟前
zz123发布了新的文献求助10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
粗犷的灵松完成签到,获得积分10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
ncuwzq完成签到,获得积分10
1分钟前
yshj完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022