Improved intracellular delivery of exosomes by surface modification with fluorinated peptide dendrimers for promoting angiogenesis and migration of HUVECs

树枝状大分子 微泡 表面改性 血管生成 细胞内 化学 生物物理学 细胞生物学 纳米技术 材料科学 生物化学 癌症研究 小RNA 生物 基因 物理化学
作者
Shengnan Ma,Lei Song,Yueyue Bai,Shihao Wang,Jiao Wang,Qian Zhang,Fazhan Wang,Yiyan He,Chuntao Tian,Guijun Qin
出处
期刊:RSC Advances [The Royal Society of Chemistry]
卷期号:13 (17): 11269-11277 被引量:12
标识
DOI:10.1039/d3ra00300k
摘要

Exosomes exhibit great potential as novel therapeutics for tissue regeneration, including cell migration and angiogenesis. However, the limited intracellular delivery efficiency of exosomes might reduce their biological effects. Here, exosomes secreted by adipose-derived mesenchymal stem cells were recombined with fluorinated peptide dendrimers (FPG3) to form the fluorine-engineered exosomes (exo@FPG3), which was intended to promote the cytosolic release and the biological function of exosomes. The mass ratio of FPG3 to exosomes at 5 was used to investigate its cellular uptake efficiency and bioactivity in HUVECs, as the charge of exo@FPG3 tended to be stable even more FPG3 was applied. It was found that exo@FPG3 could enter HUVECs through a variety of pathways, in which the clathrin-mediated endocytosis played an important role. Compared with exosomes modified with peptide dendrimers (exo@PG3) and exosomes alone, the cellular uptake efficiency of exo@FPG3 was significantly increased. Moreover, exo@FPG3 significantly enhanced the angiogenesis and migration of HUVECs in vitro as compared to exo@PG3 and exosomes. It is concluded that surface fluorine modification of exosomes with FPG3 is conducive to the cellular uptake and bioactivity of the exosome, which provides a novel strategy for engineered exosomes to enhance the biological effects of exosome-based drug delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗拉发布了新的文献求助10
1秒前
科研通AI5应助哭泣的赛凤采纳,获得30
2秒前
3秒前
3秒前
4秒前
morena发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
HHXYY完成签到 ,获得积分10
6秒前
6秒前
wos发布了新的文献求助30
7秒前
fishbig发布了新的文献求助30
8秒前
frank完成签到,获得积分10
8秒前
高贵黄蜂发布了新的文献求助30
9秒前
zhoahai发布了新的文献求助10
9秒前
今天只做一件事应助龙龙采纳,获得10
9秒前
老温完成签到,获得积分10
11秒前
tranphucthinh完成签到,获得积分10
11秒前
一八四完成签到,获得积分10
11秒前
善良的远锋完成签到,获得积分10
12秒前
彭于晏应助Xzmmmm采纳,获得10
12秒前
12秒前
妖孽的二狗完成签到 ,获得积分10
13秒前
和谐的雨真完成签到,获得积分20
15秒前
15秒前
桃桃完成签到,获得积分10
16秒前
专注篮球完成签到,获得积分10
17秒前
17秒前
17秒前
英姑应助哎哟很烦采纳,获得10
18秒前
刘清河完成签到 ,获得积分10
18秒前
18秒前
wang发布了新的文献求助10
18秒前
20秒前
21秒前
李爱国应助aga采纳,获得10
21秒前
21秒前
斯李iko发布了新的文献求助10
22秒前
修狗2完成签到,获得积分10
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483245
求助须知:如何正确求助?哪些是违规求助? 3072633
关于积分的说明 9127379
捐赠科研通 2764270
什么是DOI,文献DOI怎么找? 1517034
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700770