A fusion estimation of tire vertical forces using model-based tire state estimators for a dual-sensor intelligent tire

加速度 卡尔曼滤波器 估计员 轮胎平衡 控制理论(社会学) 加权 传感器融合 工程类 信号(编程语言) 理论(学习稳定性) 汽车工程 计算机科学 模拟 数学 人工智能 医学 统计 物理 控制(管理) 经典力学 放射科 程序设计语言 机器学习
作者
Delei Min,Yintao Wei,Tong Zhao,Junxiang He
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:: 095440702311689-095440702311689 被引量:2
标识
DOI:10.1177/09544070231168921
摘要

Estimating tire vertical forces is essential to vehicle state estimation and stability control. Intelligent tires can be used to estimate tire vertical forces, but functional safety and extensive tests are issues to consider during intelligent tire development. This paper proposes a fusion estimation approach using model-based tire state estimators (TSEs) to estimate the tire vertical forces of a dual-sensor intelligent tire, which can output the circumferential strain, radial, and circumferential acceleration signals with a strain sensor and an accelerometer mounted at different positions on the inner liner. The mutual conversion between strain and acceleration signals is indicated in this paper for the first time; therefore, the internal relationship between different signals is revealed. Each measurement signal of the two sensors corresponds to a TSE composed of a signal processing algorithm, a mathematical model, and a Kalman filter. The mathematical model is proposed in this paper based on the flexible ring tire model (FRTM). The final estimated value of the tire vertical force is obtained by weighting and summing the outputs of the three TSEs. The weighting factors are determined using the genetic algorithm to study the fusion estimation effect. An integrated CarSim model is built in this paper to validate the estimation performance under various driving conditions, including driving straight at a constant speed, driving on an S-shaped road, and performing a double lane change at a high vehicle speed. For all driving conditions, the mean error rates of the fusion estimation are less than 2%. The model-based tire state estimators can avoid the extensive tests needed in the data-based methods. Furthermore, the fusion of the outputs of three TSEs can further improve the estimation performance compared with the situation when a single TSE is used. Therefore, the studies in this paper have guiding significance for intelligent tire development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助你好采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
科研通AI6.1应助Bgeelyu采纳,获得10
1秒前
领导范儿应助蔡蔡不菜菜采纳,获得10
2秒前
2秒前
田様应助LIU采纳,获得10
4秒前
4秒前
Gideon完成签到,获得积分10
5秒前
swslgd完成签到 ,获得积分10
5秒前
5秒前
JamesPei应助三家分晋采纳,获得10
6秒前
追风hyzhang发布了新的文献求助30
7秒前
红桃EDC完成签到,获得积分10
8秒前
8秒前
荣和完成签到,获得积分20
9秒前
李白发布了新的文献求助10
9秒前
充电宝应助姜月采纳,获得10
12秒前
shuaideyapi完成签到,获得积分10
13秒前
隐形曼青应助nanomolar采纳,获得10
13秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
执着的安雁完成签到,获得积分10
17秒前
阿喔完成签到 ,获得积分10
18秒前
追风hyzhang完成签到,获得积分10
18秒前
18秒前
桐桐应助大石头采纳,获得10
19秒前
satchzhao发布了新的文献求助10
19秒前
LIU发布了新的文献求助10
19秒前
19秒前
专注者完成签到,获得积分10
20秒前
20秒前
传奇3应助认真元槐采纳,获得10
21秒前
Bgeelyu发布了新的文献求助10
21秒前
领导范儿应助小方采纳,获得10
22秒前
123发布了新的文献求助10
22秒前
22秒前
健康的人达完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736721
求助须知:如何正确求助?哪些是违规求助? 5367776
关于积分的说明 15333749
捐赠科研通 4880490
什么是DOI,文献DOI怎么找? 2622881
邀请新用户注册赠送积分活动 1571770
关于科研通互助平台的介绍 1528585