清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A fusion estimation of tire vertical forces using model-based tire state estimators for a dual-sensor intelligent tire

加速度 卡尔曼滤波器 估计员 轮胎平衡 控制理论(社会学) 加权 传感器融合 工程类 信号(编程语言) 理论(学习稳定性) 汽车工程 计算机科学 模拟 数学 人工智能 医学 统计 物理 控制(管理) 经典力学 放射科 程序设计语言 机器学习
作者
Delei Min,Yintao Wei,Tong Zhao,Junxiang He
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:: 095440702311689-095440702311689 被引量:2
标识
DOI:10.1177/09544070231168921
摘要

Estimating tire vertical forces is essential to vehicle state estimation and stability control. Intelligent tires can be used to estimate tire vertical forces, but functional safety and extensive tests are issues to consider during intelligent tire development. This paper proposes a fusion estimation approach using model-based tire state estimators (TSEs) to estimate the tire vertical forces of a dual-sensor intelligent tire, which can output the circumferential strain, radial, and circumferential acceleration signals with a strain sensor and an accelerometer mounted at different positions on the inner liner. The mutual conversion between strain and acceleration signals is indicated in this paper for the first time; therefore, the internal relationship between different signals is revealed. Each measurement signal of the two sensors corresponds to a TSE composed of a signal processing algorithm, a mathematical model, and a Kalman filter. The mathematical model is proposed in this paper based on the flexible ring tire model (FRTM). The final estimated value of the tire vertical force is obtained by weighting and summing the outputs of the three TSEs. The weighting factors are determined using the genetic algorithm to study the fusion estimation effect. An integrated CarSim model is built in this paper to validate the estimation performance under various driving conditions, including driving straight at a constant speed, driving on an S-shaped road, and performing a double lane change at a high vehicle speed. For all driving conditions, the mean error rates of the fusion estimation are less than 2%. The model-based tire state estimators can avoid the extensive tests needed in the data-based methods. Furthermore, the fusion of the outputs of three TSEs can further improve the estimation performance compared with the situation when a single TSE is used. Therefore, the studies in this paper have guiding significance for intelligent tire development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
6秒前
zzz发布了新的文献求助10
13秒前
huiluowork完成签到 ,获得积分10
29秒前
jh完成签到 ,获得积分10
37秒前
归尘应助科研通管家采纳,获得10
40秒前
Eric800824完成签到 ,获得积分10
42秒前
zzz完成签到,获得积分20
58秒前
嘻嘻哈哈完成签到 ,获得积分10
1分钟前
小文殊完成签到 ,获得积分10
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
虚幻小丸子完成签到 ,获得积分10
1分钟前
2分钟前
rover完成签到,获得积分10
2分钟前
JHY发布了新的文献求助10
2分钟前
吴学仕完成签到,获得积分10
2分钟前
Thunnus001完成签到 ,获得积分10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得30
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
郑琦敏钰完成签到 ,获得积分10
2分钟前
一个小胖子完成签到,获得积分10
3分钟前
cgs完成签到 ,获得积分10
3分钟前
Physio完成签到,获得积分10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
财路通八方完成签到 ,获得积分10
5分钟前
poki完成签到 ,获得积分10
5分钟前
Will完成签到,获得积分10
5分钟前
和气生财君完成签到 ,获得积分10
5分钟前
幽默的妍完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889804
求助须知:如何正确求助?哪些是违规求助? 4173714
关于积分的说明 12952336
捐赠科研通 3935201
什么是DOI,文献DOI怎么找? 2159296
邀请新用户注册赠送积分活动 1177620
关于科研通互助平台的介绍 1082646