A fusion estimation of tire vertical forces using model-based tire state estimators for a dual-sensor intelligent tire

加速度 卡尔曼滤波器 估计员 轮胎平衡 控制理论(社会学) 加权 传感器融合 工程类 信号(编程语言) 理论(学习稳定性) 汽车工程 计算机科学 模拟 数学 人工智能 医学 统计 物理 控制(管理) 经典力学 放射科 程序设计语言 机器学习
作者
Delei Min,Yintao Wei,Tong Zhao,Junxiang He
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:: 095440702311689-095440702311689 被引量:2
标识
DOI:10.1177/09544070231168921
摘要

Estimating tire vertical forces is essential to vehicle state estimation and stability control. Intelligent tires can be used to estimate tire vertical forces, but functional safety and extensive tests are issues to consider during intelligent tire development. This paper proposes a fusion estimation approach using model-based tire state estimators (TSEs) to estimate the tire vertical forces of a dual-sensor intelligent tire, which can output the circumferential strain, radial, and circumferential acceleration signals with a strain sensor and an accelerometer mounted at different positions on the inner liner. The mutual conversion between strain and acceleration signals is indicated in this paper for the first time; therefore, the internal relationship between different signals is revealed. Each measurement signal of the two sensors corresponds to a TSE composed of a signal processing algorithm, a mathematical model, and a Kalman filter. The mathematical model is proposed in this paper based on the flexible ring tire model (FRTM). The final estimated value of the tire vertical force is obtained by weighting and summing the outputs of the three TSEs. The weighting factors are determined using the genetic algorithm to study the fusion estimation effect. An integrated CarSim model is built in this paper to validate the estimation performance under various driving conditions, including driving straight at a constant speed, driving on an S-shaped road, and performing a double lane change at a high vehicle speed. For all driving conditions, the mean error rates of the fusion estimation are less than 2%. The model-based tire state estimators can avoid the extensive tests needed in the data-based methods. Furthermore, the fusion of the outputs of three TSEs can further improve the estimation performance compared with the situation when a single TSE is used. Therefore, the studies in this paper have guiding significance for intelligent tire development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助cici采纳,获得10
1秒前
英姑应助浩川采纳,获得10
1秒前
梨花香完成签到,获得积分10
1秒前
lql发布了新的文献求助10
1秒前
2秒前
2秒前
李晨语发布了新的文献求助10
3秒前
Steven完成签到,获得积分10
3秒前
3秒前
sh完成签到,获得积分20
3秒前
胡楠发布了新的文献求助10
3秒前
勤奋尔丝完成签到 ,获得积分10
3秒前
4秒前
田様应助sinlar采纳,获得30
4秒前
呋喃发布了新的文献求助10
4秒前
4秒前
4秒前
miyamoto完成签到,获得积分20
4秒前
rrrr发布了新的文献求助10
5秒前
zhenglingying完成签到,获得积分10
5秒前
XX完成签到,获得积分10
5秒前
巅峰小学生完成签到,获得积分20
6秒前
超级翠应助wuran采纳,获得10
6秒前
扶桑发布了新的文献求助10
8秒前
领导范儿应助myyang采纳,获得10
8秒前
Owen应助单薄怡采纳,获得30
8秒前
舸宇发布了新的文献求助10
8秒前
孔雀翎发布了新的文献求助10
9秒前
俊逸的代曼完成签到,获得积分10
9秒前
精明柜子应助美好的觅云采纳,获得100
10秒前
蔡徐坤发布了新的文献求助30
10秒前
10秒前
10秒前
欢喜的丹寒完成签到,获得积分20
10秒前
11秒前
Biohacking完成签到,获得积分10
11秒前
shim完成签到,获得积分10
11秒前
11秒前
11秒前
LL完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302