Revealing third-order interactions through the integration of machine learning and entropy methods in genomic studies

全基因组关联研究 计算机科学 上位性 单核苷酸多态性 遗传关联 SNP公司 计算生物学 人工智能 数据挖掘 机器学习 生物 遗传学 基因型 基因
作者
Burcu Yaldız,Onur Erdoğan,Sevda Rafatov,Cem İyigün,Yeşim Aydın Son
出处
期刊:Biodata Mining [Springer Nature]
卷期号:17 (1) 被引量:1
标识
DOI:10.1186/s13040-024-00355-3
摘要

Abstract Background Non-linear relationships at the genotype level are essential in understanding the genetic interactions of complex disease traits. Genome-wide association Studies (GWAS) have revealed statistical association of the SNPs in many complex diseases. As GWAS results could not thoroughly reveal the genetic background of these disorders, Genome-Wide Interaction Studies have started to gain importance. In recent years, various statistical approaches, such as entropy-based methods, have been suggested for revealing these non-additive interactions between variants. This study presents a novel prioritization workflow integrating two-step Random Forest (RF) modeling and entropy analysis after PLINK filtering. PLINK-RF-RF workflow is followed by an entropy-based 3-way interaction information (3WII) method to capture the hidden patterns resulting from non-linear relationships between genotypes in Late-Onset Alzheimer Disease to discover early and differential diagnosis markers. Results Three models from different datasets are developed by integrating PLINK-RF-RF analysis and entropy-based three-way interaction information (3WII) calculation method, which enables the detection of the third-order interactions, which are not primarily considered in epistatic interaction studies. A reduced SNP set is selected for all three datasets by 3WII analysis by PLINK filtering and prioritization of SNP with RF-RF modeling, promising as a model minimization approach. Among SNPs revealed by 3WII, 4 SNPs out of 19 from GenADA, 1 SNP out of 27 from ADNI, and 4 SNPs out of 106 from NCRAD are mapped to genes directly associated with Alzheimer Disease. Additionally, several SNPs are associated with other neurological disorders. Also, the genes the variants mapped to in all datasets are significantly enriched in calcium ion binding, extracellular matrix, external encapsulating structure, and RUNX1 regulates estrogen receptor-mediated transcription pathways. Therefore, these functional pathways are proposed for further examination for a possible LOAD association. Besides, all 3WII variants are proposed as candidate biomarkers for the genotyping-based LOAD diagnosis. Conclusion The entropy approach performed in this study reveals the complex genetic interactions that significantly contribute to LOAD risk. We benefited from the entropy-based 3WII as a model minimization step and determined the significant 3-way interactions between the prioritized SNPs by PLINK-RF-RF. This framework is a promising approach for disease association studies, which can also be modified by integrating other machine learning and entropy-based interaction methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助白一闪采纳,获得10
刚刚
刚刚
u2u2完成签到,获得积分10
刚刚
1秒前
科研通AI2S应助ggg采纳,获得10
1秒前
1秒前
优秀星星完成签到,获得积分10
1秒前
2秒前
巴拉拉发布了新的文献求助10
2秒前
2秒前
2秒前
搜集达人应助noneo采纳,获得10
2秒前
3秒前
小二郎应助yyygc采纳,获得10
3秒前
梅梅王完成签到,获得积分10
4秒前
琦琦发布了新的文献求助10
4秒前
CodeCraft应助热狗采纳,获得10
4秒前
4秒前
金鱼发布了新的文献求助20
4秒前
6秒前
6秒前
宝宝发布了新的文献求助10
6秒前
承蒙大爱发布了新的文献求助10
6秒前
和谐小霸王完成签到,获得积分10
7秒前
zydaphne完成签到 ,获得积分10
7秒前
海天使发布了新的文献求助10
7秒前
7秒前
7秒前
斯文败类应助lyw采纳,获得10
7秒前
煎饼果子发布了新的文献求助10
8秒前
8秒前
kxuehen完成签到,获得积分10
8秒前
8秒前
qxqy6678发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
李爱国应助Jarvis采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534