RSRNeT: a novel multi-modal network framework for named entity recognition and relation extraction

关系抽取 计算机科学 情态动词 关系(数据库) 命名实体识别 萃取(化学) 人工智能 自然语言处理 模式识别(心理学) 数据挖掘 化学 色谱法 工程类 任务(项目管理) 系统工程 高分子化学
作者
Min Wang,Hongbin Chen,Dingcai Shen,Baolei Li,Shiyu Hu
出处
期刊:PeerJ [PeerJ]
卷期号:10: e1856-e1856
标识
DOI:10.7717/peerj-cs.1856
摘要

Named entity recognition (NER) and relation extraction (RE) are two important technologies employed in knowledge extraction for constructing knowledge graphs. Uni-modal NER and RE approaches solely rely on text information for knowledge extraction, leading to various limitations, such as suboptimal performance and low efficiency in recognizing polysemous words. With the development of multi-modal learning, multi-modal named entity recognition (MNER) and multi-modal relation extraction (MRE) have been introduced to improve recognition performance. However, existing MNER and MRE methods often encounter reduced efficiency when the text includes unrelated images. To address this problem, we propose a novel multi-modal network framework for named entity recognition and relation extraction called RSRNeT. In RSRNeT, we focus on extracting visual features more fully and designing a multi-scale visual feature extraction module based on ResNeSt network. On the other hand, we also emphasize fusing multi-modal features more comprehensively while minimizing interference from irrelevant images. To address this issue, we propose a multi-modal feature fusing module based on RoBERTa network. These two modules enable us to learn superior visual and textual representations, reducing errors caused by irrelevant images. Our approach has undergone extensive evaluation and comparison with various baseline models on MNER and MRE tasks. Experimental results show that our method achieves state-of-the-art performance in recall and F1 score on three public datasets: Twitter2015, Twitter2017 and MNRE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy发布了新的文献求助10
刚刚
东山完成签到,获得积分10
1秒前
1秒前
1秒前
锦城纯契完成签到 ,获得积分10
1秒前
Hello应助LKSkywalker采纳,获得10
1秒前
汉堡包应助量子星尘采纳,获得50
2秒前
无花果应助量子星尘采纳,获得50
2秒前
mmmmm完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
Attaa完成签到,获得积分10
5秒前
苹果凝旋发布了新的文献求助10
5秒前
5秒前
5秒前
NexusExplorer应助量子星尘采纳,获得50
5秒前
6秒前
6秒前
Akim应助量子星尘采纳,获得50
6秒前
6秒前
7秒前
zz发布了新的文献求助10
7秒前
JamesPei应助量子星尘采纳,获得50
7秒前
天天快乐应助王三采纳,获得10
8秒前
Hello应助广州队采纳,获得10
8秒前
K丶口袋发布了新的文献求助10
9秒前
Hello应助柏树采纳,获得10
9秒前
量子星尘发布了新的文献求助50
9秒前
9秒前
orixero应助量子星尘采纳,获得50
10秒前
科研通AI6.1应助细腻初雪采纳,获得10
10秒前
小巧的梦发布了新的文献求助30
11秒前
香蕉觅云应助量子星尘采纳,获得50
11秒前
wd发布了新的文献求助10
11秒前
慕青应助量子星尘采纳,获得50
11秒前
SweetyANN发布了新的文献求助30
11秒前
在水一方应助量子星尘采纳,获得50
12秒前
12秒前
鲁啊鲁完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805195
求助须知:如何正确求助?哪些是违规求助? 5848012
关于积分的说明 15515402
捐赠科研通 4930468
什么是DOI,文献DOI怎么找? 2654642
邀请新用户注册赠送积分活动 1601437
关于科研通互助平台的介绍 1556419