RSRNeT: a novel multi-modal network framework for named entity recognition and relation extraction

关系抽取 计算机科学 情态动词 关系(数据库) 命名实体识别 萃取(化学) 人工智能 自然语言处理 模式识别(心理学) 数据挖掘 化学 色谱法 工程类 任务(项目管理) 高分子化学 系统工程
作者
Min Wang,Hongbin Chen,Dingcai Shen,Baolei Li,Shiyu Hu
出处
期刊:PeerJ [PeerJ]
卷期号:10: e1856-e1856
标识
DOI:10.7717/peerj-cs.1856
摘要

Named entity recognition (NER) and relation extraction (RE) are two important technologies employed in knowledge extraction for constructing knowledge graphs. Uni-modal NER and RE approaches solely rely on text information for knowledge extraction, leading to various limitations, such as suboptimal performance and low efficiency in recognizing polysemous words. With the development of multi-modal learning, multi-modal named entity recognition (MNER) and multi-modal relation extraction (MRE) have been introduced to improve recognition performance. However, existing MNER and MRE methods often encounter reduced efficiency when the text includes unrelated images. To address this problem, we propose a novel multi-modal network framework for named entity recognition and relation extraction called RSRNeT. In RSRNeT, we focus on extracting visual features more fully and designing a multi-scale visual feature extraction module based on ResNeSt network. On the other hand, we also emphasize fusing multi-modal features more comprehensively while minimizing interference from irrelevant images. To address this issue, we propose a multi-modal feature fusing module based on RoBERTa network. These two modules enable us to learn superior visual and textual representations, reducing errors caused by irrelevant images. Our approach has undergone extensive evaluation and comparison with various baseline models on MNER and MRE tasks. Experimental results show that our method achieves state-of-the-art performance in recall and F1 score on three public datasets: Twitter2015, Twitter2017 and MNRE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
louiselong发布了新的文献求助10
刚刚
c1302128340完成签到,获得积分10
刚刚
刚刚
Quinna完成签到,获得积分10
1秒前
发发旦旦完成签到,获得积分10
2秒前
英俊的铭应助想毕业了采纳,获得10
3秒前
乐观的大叔完成签到 ,获得积分10
3秒前
3秒前
忘多发布了新的文献求助10
4秒前
4秒前
Neoshine完成签到,获得积分10
4秒前
ruicao完成签到,获得积分10
5秒前
张雨兴完成签到,获得积分10
6秒前
文森特的向日葵完成签到,获得积分10
8秒前
8秒前
彩虹屁完成签到,获得积分10
8秒前
1s完成签到,获得积分10
8秒前
shenzhou9完成签到,获得积分10
8秒前
haozi应助felix采纳,获得50
8秒前
懒大王完成签到,获得积分10
9秒前
Hunter完成签到,获得积分10
9秒前
文章快快来完成签到,获得积分10
10秒前
温婉的眼神完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
汉堡包应助伶俐骁采纳,获得10
11秒前
宿帅帅完成签到,获得积分10
12秒前
肥猫完成签到,获得积分10
12秒前
tcf完成签到,获得积分10
12秒前
缓慢修杰完成签到,获得积分10
13秒前
谨慎的沉鱼完成签到,获得积分10
13秒前
rtaxa完成签到,获得积分0
14秒前
碳酸氢钠完成签到,获得积分10
14秒前
高贵的洋葱完成签到,获得积分10
15秒前
婷儿发布了新的文献求助10
15秒前
飘逸的尔安完成签到,获得积分10
15秒前
执着尔云发布了新的文献求助10
16秒前
时尚的傲霜完成签到,获得积分10
16秒前
尘南浔发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401972
求助须知:如何正确求助?哪些是违规求助? 4520630
关于积分的说明 14080343
捐赠科研通 4434071
什么是DOI,文献DOI怎么找? 2434371
邀请新用户注册赠送积分活动 1426592
关于科研通互助平台的介绍 1405338