RSRNeT: a novel multi-modal network framework for named entity recognition and relation extraction

关系抽取 计算机科学 情态动词 关系(数据库) 命名实体识别 萃取(化学) 人工智能 自然语言处理 模式识别(心理学) 数据挖掘 化学 色谱法 工程类 任务(项目管理) 系统工程 高分子化学
作者
Min Wang,Hongbin Chen,Dingcai Shen,Baolei Li,Shiyu Hu
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:10: e1856-e1856
标识
DOI:10.7717/peerj-cs.1856
摘要

Named entity recognition (NER) and relation extraction (RE) are two important technologies employed in knowledge extraction for constructing knowledge graphs. Uni-modal NER and RE approaches solely rely on text information for knowledge extraction, leading to various limitations, such as suboptimal performance and low efficiency in recognizing polysemous words. With the development of multi-modal learning, multi-modal named entity recognition (MNER) and multi-modal relation extraction (MRE) have been introduced to improve recognition performance. However, existing MNER and MRE methods often encounter reduced efficiency when the text includes unrelated images. To address this problem, we propose a novel multi-modal network framework for named entity recognition and relation extraction called RSRNeT. In RSRNeT, we focus on extracting visual features more fully and designing a multi-scale visual feature extraction module based on ResNeSt network. On the other hand, we also emphasize fusing multi-modal features more comprehensively while minimizing interference from irrelevant images. To address this issue, we propose a multi-modal feature fusing module based on RoBERTa network. These two modules enable us to learn superior visual and textual representations, reducing errors caused by irrelevant images. Our approach has undergone extensive evaluation and comparison with various baseline models on MNER and MRE tasks. Experimental results show that our method achieves state-of-the-art performance in recall and F1 score on three public datasets: Twitter2015, Twitter2017 and MNRE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘻嘻完成签到,获得积分10
1秒前
ibigbird完成签到,获得积分10
1秒前
1秒前
直率的盼曼完成签到,获得积分10
2秒前
2秒前
开朗的大叔完成签到,获得积分10
2秒前
lxx完成签到,获得积分10
2秒前
TT发布了新的文献求助10
3秒前
维多利亚完成签到,获得积分10
3秒前
李金文发布了新的文献求助10
4秒前
4秒前
shuang完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
纯真如松发布了新的文献求助10
5秒前
xuxuxuuxuxux完成签到,获得积分10
6秒前
果实发布了新的文献求助80
6秒前
叫个啥嘞完成签到,获得积分20
6秒前
维多利亚发布了新的文献求助30
6秒前
luckyd发布了新的文献求助10
6秒前
du发布了新的文献求助10
7秒前
chen完成签到,获得积分10
7秒前
wxy完成签到,获得积分10
7秒前
ZYP完成签到,获得积分10
7秒前
7秒前
8秒前
nickel完成签到,获得积分10
8秒前
ShengQ发布了新的文献求助20
8秒前
羡鱼完成签到,获得积分10
9秒前
qq发布了新的文献求助10
9秒前
思源应助ibigbird采纳,获得10
9秒前
maolao完成签到,获得积分10
9秒前
10秒前
JamesPei应助enen采纳,获得10
10秒前
JingP发布了新的文献求助10
10秒前
10秒前
fjnm发布了新的文献求助10
10秒前
GYF完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118