RSRNeT: a novel multi-modal network framework for named entity recognition and relation extraction

关系抽取 计算机科学 情态动词 关系(数据库) 命名实体识别 萃取(化学) 人工智能 自然语言处理 模式识别(心理学) 数据挖掘 化学 色谱法 工程类 任务(项目管理) 高分子化学 系统工程
作者
Min Wang,Hongbin Chen,Dingcai Shen,Baolei Li,Shiyu Hu
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:10: e1856-e1856
标识
DOI:10.7717/peerj-cs.1856
摘要

Named entity recognition (NER) and relation extraction (RE) are two important technologies employed in knowledge extraction for constructing knowledge graphs. Uni-modal NER and RE approaches solely rely on text information for knowledge extraction, leading to various limitations, such as suboptimal performance and low efficiency in recognizing polysemous words. With the development of multi-modal learning, multi-modal named entity recognition (MNER) and multi-modal relation extraction (MRE) have been introduced to improve recognition performance. However, existing MNER and MRE methods often encounter reduced efficiency when the text includes unrelated images. To address this problem, we propose a novel multi-modal network framework for named entity recognition and relation extraction called RSRNeT. In RSRNeT, we focus on extracting visual features more fully and designing a multi-scale visual feature extraction module based on ResNeSt network. On the other hand, we also emphasize fusing multi-modal features more comprehensively while minimizing interference from irrelevant images. To address this issue, we propose a multi-modal feature fusing module based on RoBERTa network. These two modules enable us to learn superior visual and textual representations, reducing errors caused by irrelevant images. Our approach has undergone extensive evaluation and comparison with various baseline models on MNER and MRE tasks. Experimental results show that our method achieves state-of-the-art performance in recall and F1 score on three public datasets: Twitter2015, Twitter2017 and MNRE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛奶加蜂蜜完成签到,获得积分10
2秒前
Yeeee完成签到 ,获得积分10
3秒前
4秒前
5秒前
6秒前
7秒前
刘泗青应助稳重的蜻蜓采纳,获得20
7秒前
tjr8910完成签到,获得积分20
8秒前
8秒前
深情安青应助HeJiangle采纳,获得10
8秒前
柴犬发布了新的文献求助10
9秒前
Ava应助77采纳,获得10
9秒前
11秒前
ddfighting发布了新的文献求助10
11秒前
研友_V8Qmr8发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
香蕉凌蝶完成签到,获得积分10
12秒前
结实听筠发布了新的文献求助10
13秒前
xt完成签到,获得积分10
13秒前
13秒前
娜娜子发布了新的文献求助150
13秒前
小巧书雪完成签到,获得积分10
14秒前
14秒前
富兰克林的薄荷糖完成签到,获得积分10
16秒前
斯文败类应助123采纳,获得10
16秒前
情怀应助power采纳,获得10
16秒前
17秒前
单纯语柳完成签到 ,获得积分10
17秒前
19秒前
单薄黑米发布了新的文献求助10
19秒前
19秒前
丽丽发布了新的文献求助10
21秒前
桔梗完成签到,获得积分10
21秒前
寂寞剑仙完成签到,获得积分10
22秒前
浮游应助liudy采纳,获得10
22秒前
22秒前
24秒前
善学以致用应助研友_V8Qmr8采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156500
求助须知:如何正确求助?哪些是违规求助? 4351934
关于积分的说明 13550580
捐赠科研通 4195119
什么是DOI,文献DOI怎么找? 2300845
邀请新用户注册赠送积分活动 1300773
关于科研通互助平台的介绍 1245847