清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model

人工神经网络 本构方程 各向同性 应用数学 稳健性(进化) 结合属性 数学 人工智能 物理 计算机科学 有限元法 结构工程 工程类 基因 量子力学 生物化学 化学 纯数学
作者
Arunabha M. Roy,Suman Guha,Veera Sundararaghavan,Raymundo Arróyave
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:185: 105570-105570 被引量:16
标识
DOI:10.1016/j.jmps.2024.105570
摘要

In the present work, a physics-informed deep learning-based constitutive modeling approach has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling approach for representing complex and highly non-linear elastoplastic constitutive response prevents accurate predictions due to the absence of prior physical information. To mitigate this, we design an efficient physics-constrained training approach leveraging prior physics-driven optimization procedures. It has been achieved by formulating a highly physics-augmented multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions. Utilizing multiple densely connected independent feed-forward deep neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the model obtains the accurate elastoplastic solution by minimizing the proposed loss function. The strength and robustness of the approach have been demonstrated by accurately solving the benchmark problem where a plastically deformed isotropic shallow stratum has been subjected to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the performance and trainability of the model, extensive experiments on network architecture and various degrees of data-driven estimate shed light on significant improvement in terms of the accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features. Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the possibility of predicting solutions for different sets of applied stress and material parameters. Requiring significantly less training data, the framework can simultaneously enhance the accuracy of the solution and adaptability of training by demonstrating rapid convergence in critical loss components. The current study highlights a systematic development of a novel physics-informed deep learning approach which is quite generic in nature, yet robust and highly physics-augmented for transferability of known knowledge for vastly accelerated convergence with improved accuracy of predicting an accurate description of non-associative elastoplastic solution in the regime of continuum mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑对人生完成签到 ,获得积分10
36秒前
桥西小河完成签到 ,获得积分10
47秒前
Lny发布了新的文献求助20
1分钟前
朱婷完成签到 ,获得积分10
1分钟前
1分钟前
V_I_G完成签到 ,获得积分0
1分钟前
1分钟前
hEbuy发布了新的文献求助10
1分钟前
hEbuy完成签到,获得积分10
2分钟前
王威完成签到,获得积分20
2分钟前
123完成签到 ,获得积分10
2分钟前
Lucas应助没耳朵的小仙女采纳,获得10
2分钟前
枯叶蝶完成签到 ,获得积分10
2分钟前
小李老博完成签到,获得积分10
3分钟前
房天川完成签到 ,获得积分10
3分钟前
沿途有你完成签到 ,获得积分10
5分钟前
传奇3应助ganggang采纳,获得10
5分钟前
6分钟前
Jason发布了新的文献求助10
6分钟前
珍珠完成签到 ,获得积分10
6分钟前
涛1完成签到 ,获得积分10
6分钟前
7分钟前
汉堡包应助xuan采纳,获得10
7分钟前
space完成签到,获得积分10
7分钟前
7分钟前
xuan发布了新的文献求助10
7分钟前
所所应助胖虎采纳,获得10
7分钟前
小鱼发布了新的文献求助10
7分钟前
没时间解释了完成签到 ,获得积分10
8分钟前
cc完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
ganggang发布了新的文献求助10
9分钟前
缥缈的觅风完成签到 ,获得积分10
9分钟前
希望天下0贩的0应助willa采纳,获得10
9分钟前
三岁发布了新的文献求助10
9分钟前
三岁完成签到,获得积分20
9分钟前
9分钟前
任性翠安完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568283
求助须知:如何正确求助?哪些是违规求助? 4652789
关于积分的说明 14702004
捐赠科研通 4594614
什么是DOI,文献DOI怎么找? 2521112
邀请新用户注册赠送积分活动 1492900
关于科研通互助平台的介绍 1463715