Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model

人工神经网络 本构方程 各向同性 应用数学 稳健性(进化) 结合属性 数学 人工智能 物理 计算机科学 有限元法 结构工程 工程类 纯数学 生物化学 化学 量子力学 基因
作者
Arunabha M. Roy,Suman Guha,Veera Sundararaghavan,Raymundo Arróyave
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:185: 105570-105570 被引量:16
标识
DOI:10.1016/j.jmps.2024.105570
摘要

In the present work, a physics-informed deep learning-based constitutive modeling approach has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling approach for representing complex and highly non-linear elastoplastic constitutive response prevents accurate predictions due to the absence of prior physical information. To mitigate this, we design an efficient physics-constrained training approach leveraging prior physics-driven optimization procedures. It has been achieved by formulating a highly physics-augmented multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions. Utilizing multiple densely connected independent feed-forward deep neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the model obtains the accurate elastoplastic solution by minimizing the proposed loss function. The strength and robustness of the approach have been demonstrated by accurately solving the benchmark problem where a plastically deformed isotropic shallow stratum has been subjected to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the performance and trainability of the model, extensive experiments on network architecture and various degrees of data-driven estimate shed light on significant improvement in terms of the accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features. Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the possibility of predicting solutions for different sets of applied stress and material parameters. Requiring significantly less training data, the framework can simultaneously enhance the accuracy of the solution and adaptability of training by demonstrating rapid convergence in critical loss components. The current study highlights a systematic development of a novel physics-informed deep learning approach which is quite generic in nature, yet robust and highly physics-augmented for transferability of known knowledge for vastly accelerated convergence with improved accuracy of predicting an accurate description of non-associative elastoplastic solution in the regime of continuum mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
胡自律完成签到,获得积分10
刚刚
lixueao发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
房恩羽发布了新的文献求助10
3秒前
健康的鸽子应助bin采纳,获得10
3秒前
所所应助bin采纳,获得10
3秒前
3秒前
我是老大应助潮汐采纳,获得10
4秒前
不怕考试的赵无敌完成签到,获得积分10
4秒前
he完成签到 ,获得积分10
5秒前
我是中国人完成签到,获得积分10
5秒前
王w发布了新的文献求助10
5秒前
6秒前
汉堡包应助一颗橘子洲头采纳,获得10
6秒前
azmj发布了新的文献求助10
6秒前
潺潺流水完成签到,获得积分10
7秒前
张zz发布了新的文献求助10
8秒前
8秒前
8秒前
好名字完成签到,获得积分10
9秒前
眼睛大的书易完成签到,获得积分10
9秒前
烦恼大海发布了新的文献求助10
9秒前
lmy完成签到,获得积分10
9秒前
岘屿完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
晴qq发布了新的文献求助10
11秒前
11秒前
墨月发布了新的文献求助10
12秒前
费1发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
斯文败类应助xzh采纳,获得10
14秒前
15秒前
好名字发布了新的文献求助10
15秒前
墙雨轩完成签到 ,获得积分10
16秒前
研友_VZG7GZ应助QYPANG采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
能干巨人应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685