Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model

人工神经网络 本构方程 各向同性 应用数学 稳健性(进化) 结合属性 数学 人工智能 物理 计算机科学 有限元法 结构工程 工程类 纯数学 生物化学 化学 量子力学 基因
作者
Arunabha M. Roy,Suman Guha,Veera Sundararaghavan,Raymundo Arróyave
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:185: 105570-105570 被引量:1
标识
DOI:10.1016/j.jmps.2024.105570
摘要

In the present work, a physics-informed deep learning-based constitutive modeling approach has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling approach for representing complex and highly non-linear elastoplastic constitutive response prevents accurate predictions due to the absence of prior physical information. To mitigate this, we design an efficient physics-constrained training approach leveraging prior physics-driven optimization procedures. It has been achieved by formulating a highly physics-augmented multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions. Utilizing multiple densely connected independent feed-forward deep neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the model obtains the accurate elastoplastic solution by minimizing the proposed loss function. The strength and robustness of the approach have been demonstrated by accurately solving the benchmark problem where a plastically deformed isotropic shallow stratum has been subjected to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the performance and trainability of the model, extensive experiments on network architecture and various degrees of data-driven estimate shed light on significant improvement in terms of the accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features. Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the possibility of predicting solutions for different sets of applied stress and material parameters. Requiring significantly less training data, the framework can simultaneously enhance the accuracy of the solution and adaptability of training by demonstrating rapid convergence in critical loss components. The current study highlights a systematic development of a novel physics-informed deep learning approach which is quite generic in nature, yet robust and highly physics-augmented for transferability of known knowledge for vastly accelerated convergence with improved accuracy of predicting an accurate description of non-associative elastoplastic solution in the regime of continuum mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
刘冠廷完成签到,获得积分10
2秒前
小彭友完成签到 ,获得积分10
2秒前
逍遥完成签到 ,获得积分10
3秒前
嗯哼应助帅气的小兔子采纳,获得20
3秒前
张勇涛发布了新的文献求助10
3秒前
呜啦啦发布了新的文献求助10
4秒前
5秒前
7秒前
7秒前
8秒前
善良的书本完成签到,获得积分10
9秒前
SciGPT应助宋博采纳,获得50
9秒前
打打应助张勇涛采纳,获得10
10秒前
11秒前
wang发布了新的文献求助10
12秒前
guoduan发布了新的文献求助10
13秒前
勤奋的大便完成签到 ,获得积分10
13秒前
萍萍子完成签到,获得积分20
13秒前
14秒前
14秒前
hjm发布了新的文献求助10
15秒前
15秒前
wang发布了新的文献求助10
16秒前
16秒前
无花果应助zj采纳,获得10
17秒前
明亮忆秋完成签到,获得积分20
18秒前
18秒前
18秒前
18秒前
榴莲发布了新的文献求助10
18秒前
Lian发布了新的文献求助10
19秒前
ZH发布了新的文献求助10
20秒前
搞怪书兰发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
李健应助雨碎寒江采纳,获得10
21秒前
可以的发布了新的文献求助10
22秒前
22秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3093988
求助须知:如何正确求助?哪些是违规求助? 2745878
关于积分的说明 7587633
捐赠科研通 2397197
什么是DOI,文献DOI怎么找? 1271798
科研通“疑难数据库(出版商)”最低求助积分说明 615272
版权声明 598844