Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model

人工神经网络 本构方程 各向同性 应用数学 稳健性(进化) 结合属性 数学 人工智能 物理 计算机科学 有限元法 结构工程 工程类 基因 量子力学 生物化学 化学 纯数学
作者
Arunabha M. Roy,Suman Guha,Veera Sundararaghavan,Raymundo Arróyave
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:185: 105570-105570 被引量:16
标识
DOI:10.1016/j.jmps.2024.105570
摘要

In the present work, a physics-informed deep learning-based constitutive modeling approach has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling approach for representing complex and highly non-linear elastoplastic constitutive response prevents accurate predictions due to the absence of prior physical information. To mitigate this, we design an efficient physics-constrained training approach leveraging prior physics-driven optimization procedures. It has been achieved by formulating a highly physics-augmented multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions. Utilizing multiple densely connected independent feed-forward deep neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the model obtains the accurate elastoplastic solution by minimizing the proposed loss function. The strength and robustness of the approach have been demonstrated by accurately solving the benchmark problem where a plastically deformed isotropic shallow stratum has been subjected to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the performance and trainability of the model, extensive experiments on network architecture and various degrees of data-driven estimate shed light on significant improvement in terms of the accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features. Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the possibility of predicting solutions for different sets of applied stress and material parameters. Requiring significantly less training data, the framework can simultaneously enhance the accuracy of the solution and adaptability of training by demonstrating rapid convergence in critical loss components. The current study highlights a systematic development of a novel physics-informed deep learning approach which is quite generic in nature, yet robust and highly physics-augmented for transferability of known knowledge for vastly accelerated convergence with improved accuracy of predicting an accurate description of non-associative elastoplastic solution in the regime of continuum mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的导师应助Jason采纳,获得10
1秒前
搞怪的千秋完成签到,获得积分10
1秒前
11完成签到 ,获得积分10
2秒前
努力科研发布了新的文献求助10
2秒前
糊涂的疾完成签到 ,获得积分10
3秒前
健忘的夜阑完成签到,获得积分10
4秒前
杨皓婷完成签到,获得积分10
5秒前
天才J完成签到,获得积分10
5秒前
6秒前
鱼缸换水晶完成签到 ,获得积分10
6秒前
七海之风发布了新的文献求助10
6秒前
10秒前
无花果应助杨皓婷采纳,获得10
10秒前
最最最发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
13秒前
Baiyu发布了新的文献求助10
14秒前
奋斗的绝悟完成签到,获得积分10
14秒前
14秒前
15秒前
霸气的冰旋完成签到,获得积分10
15秒前
heilong发布了新的文献求助10
15秒前
星辰大海应助大意的语琴采纳,获得100
17秒前
四季刻歌完成签到,获得积分10
17秒前
丘比特应助wwwanfg采纳,获得10
18秒前
发发完成签到 ,获得积分10
18秒前
18秒前
20秒前
wxt完成签到,获得积分10
21秒前
sw发布了新的文献求助10
21秒前
Olivia雪雪完成签到 ,获得积分10
21秒前
最最最完成签到,获得积分20
22秒前
搜集达人应助乐仔采纳,获得10
22秒前
量子星尘发布了新的文献求助10
24秒前
LJQ发布了新的文献求助10
24秒前
yyq617569158完成签到,获得积分20
26秒前
liu发布了新的文献求助10
26秒前
heilong完成签到,获得积分10
28秒前
30秒前
31秒前
赘婿应助liu采纳,获得10
34秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580624
求助须知:如何正确求助?哪些是违规求助? 4665515
关于积分的说明 14756188
捐赠科研通 4606909
什么是DOI,文献DOI怎么找? 2528096
邀请新用户注册赠送积分活动 1497399
关于科研通互助平台的介绍 1466355