Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model

人工神经网络 本构方程 各向同性 应用数学 稳健性(进化) 结合属性 数学 人工智能 物理 计算机科学 有限元法 结构工程 工程类 基因 量子力学 生物化学 化学 纯数学
作者
Arunabha M. Roy,Suman Guha,Veera Sundararaghavan,Raymundo Arróyave
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:185: 105570-105570 被引量:16
标识
DOI:10.1016/j.jmps.2024.105570
摘要

In the present work, a physics-informed deep learning-based constitutive modeling approach has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling approach for representing complex and highly non-linear elastoplastic constitutive response prevents accurate predictions due to the absence of prior physical information. To mitigate this, we design an efficient physics-constrained training approach leveraging prior physics-driven optimization procedures. It has been achieved by formulating a highly physics-augmented multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions. Utilizing multiple densely connected independent feed-forward deep neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the model obtains the accurate elastoplastic solution by minimizing the proposed loss function. The strength and robustness of the approach have been demonstrated by accurately solving the benchmark problem where a plastically deformed isotropic shallow stratum has been subjected to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the performance and trainability of the model, extensive experiments on network architecture and various degrees of data-driven estimate shed light on significant improvement in terms of the accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features. Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the possibility of predicting solutions for different sets of applied stress and material parameters. Requiring significantly less training data, the framework can simultaneously enhance the accuracy of the solution and adaptability of training by demonstrating rapid convergence in critical loss components. The current study highlights a systematic development of a novel physics-informed deep learning approach which is quite generic in nature, yet robust and highly physics-augmented for transferability of known knowledge for vastly accelerated convergence with improved accuracy of predicting an accurate description of non-associative elastoplastic solution in the regime of continuum mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助收尾人采纳,获得10
1秒前
1秒前
ccm应助曾经的青槐采纳,获得10
1秒前
专注的糖豆完成签到,获得积分10
1秒前
11完成签到 ,获得积分10
2秒前
Pony完成签到,获得积分0
2秒前
111发布了新的文献求助10
4秒前
称心的不言应助YANG采纳,获得10
5秒前
唠叨的胡萝卜完成签到,获得积分10
5秒前
5秒前
搞怪孤丝完成签到 ,获得积分10
5秒前
7秒前
SAINT完成签到,获得积分10
7秒前
8秒前
10秒前
11秒前
iaskwho发布了新的文献求助10
11秒前
111完成签到,获得积分10
12秒前
12秒前
DarrenVan完成签到,获得积分10
15秒前
英俊的铭应助lk采纳,获得10
15秒前
lucky完成签到 ,获得积分10
15秒前
王国科发布了新的文献求助10
16秒前
高高的天亦完成签到 ,获得积分10
16秒前
小D发布了新的文献求助10
17秒前
村上春树的摩的完成签到 ,获得积分10
17秒前
Fox完成签到,获得积分20
18秒前
19秒前
一一完成签到 ,获得积分10
19秒前
20秒前
ccm应助科研通管家采纳,获得10
21秒前
Bio应助科研通管家采纳,获得150
21秒前
无花果应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
22秒前
ccm应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
若ruofeng应助科研通管家采纳,获得20
22秒前
dew应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514