Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model

人工神经网络 本构方程 各向同性 应用数学 稳健性(进化) 结合属性 数学 人工智能 物理 计算机科学 有限元法 结构工程 工程类 纯数学 生物化学 化学 量子力学 基因
作者
Arunabha M. Roy,Suman Guha,Veera Sundararaghavan,Raymundo Arróyave
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:185: 105570-105570 被引量:16
标识
DOI:10.1016/j.jmps.2024.105570
摘要

In the present work, a physics-informed deep learning-based constitutive modeling approach has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling approach for representing complex and highly non-linear elastoplastic constitutive response prevents accurate predictions due to the absence of prior physical information. To mitigate this, we design an efficient physics-constrained training approach leveraging prior physics-driven optimization procedures. It has been achieved by formulating a highly physics-augmented multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions. Utilizing multiple densely connected independent feed-forward deep neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the model obtains the accurate elastoplastic solution by minimizing the proposed loss function. The strength and robustness of the approach have been demonstrated by accurately solving the benchmark problem where a plastically deformed isotropic shallow stratum has been subjected to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the performance and trainability of the model, extensive experiments on network architecture and various degrees of data-driven estimate shed light on significant improvement in terms of the accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features. Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the possibility of predicting solutions for different sets of applied stress and material parameters. Requiring significantly less training data, the framework can simultaneously enhance the accuracy of the solution and adaptability of training by demonstrating rapid convergence in critical loss components. The current study highlights a systematic development of a novel physics-informed deep learning approach which is quite generic in nature, yet robust and highly physics-augmented for transferability of known knowledge for vastly accelerated convergence with improved accuracy of predicting an accurate description of non-associative elastoplastic solution in the regime of continuum mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
solaryl完成签到 ,获得积分10
刚刚
1秒前
小蘑菇应助鱼鱼色采纳,获得10
1秒前
2秒前
程建栋完成签到,获得积分20
2秒前
3秒前
Ayna发布了新的文献求助10
3秒前
北克发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
slow发布了新的文献求助10
6秒前
李爱国应助独特的安波采纳,获得10
7秒前
背后的华发布了新的文献求助10
8秒前
悬溺发布了新的文献求助10
8秒前
8秒前
Ehgnix完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
柠溪发布了新的文献求助10
10秒前
11秒前
彪壮的机器猫完成签到 ,获得积分10
11秒前
zxc完成签到,获得积分10
11秒前
12秒前
蝶步韶华发布了新的文献求助10
12秒前
12秒前
所所应助蛋挞采纳,获得10
13秒前
13秒前
落后满天完成签到,获得积分10
13秒前
后笑晴发布了新的文献求助10
14秒前
鱼鱼色发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
情怀应助slow采纳,获得10
14秒前
飘逸电源完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
十一发布了新的文献求助10
16秒前
程建栋发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694525
求助须知:如何正确求助?哪些是违规求助? 5097567
关于积分的说明 15213869
捐赠科研通 4851086
什么是DOI,文献DOI怎么找? 2602107
邀请新用户注册赠送积分活动 1554007
关于科研通互助平台的介绍 1511898