已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model

人工神经网络 本构方程 各向同性 应用数学 稳健性(进化) 结合属性 数学 人工智能 物理 计算机科学 有限元法 结构工程 工程类 基因 量子力学 生物化学 化学 纯数学
作者
Arunabha M. Roy,Suman Guha,Veera Sundararaghavan,Raymundo Arróyave
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:185: 105570-105570 被引量:16
标识
DOI:10.1016/j.jmps.2024.105570
摘要

In the present work, a physics-informed deep learning-based constitutive modeling approach has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling approach for representing complex and highly non-linear elastoplastic constitutive response prevents accurate predictions due to the absence of prior physical information. To mitigate this, we design an efficient physics-constrained training approach leveraging prior physics-driven optimization procedures. It has been achieved by formulating a highly physics-augmented multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions. Utilizing multiple densely connected independent feed-forward deep neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the model obtains the accurate elastoplastic solution by minimizing the proposed loss function. The strength and robustness of the approach have been demonstrated by accurately solving the benchmark problem where a plastically deformed isotropic shallow stratum has been subjected to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the performance and trainability of the model, extensive experiments on network architecture and various degrees of data-driven estimate shed light on significant improvement in terms of the accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features. Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the possibility of predicting solutions for different sets of applied stress and material parameters. Requiring significantly less training data, the framework can simultaneously enhance the accuracy of the solution and adaptability of training by demonstrating rapid convergence in critical loss components. The current study highlights a systematic development of a novel physics-informed deep learning approach which is quite generic in nature, yet robust and highly physics-augmented for transferability of known knowledge for vastly accelerated convergence with improved accuracy of predicting an accurate description of non-associative elastoplastic solution in the regime of continuum mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yzq发布了新的文献求助10
1秒前
1秒前
一休完成签到,获得积分10
6秒前
7秒前
一休发布了新的文献求助10
8秒前
好巧完成签到,获得积分10
9秒前
SciGPT应助VESong采纳,获得10
9秒前
11秒前
有魅力的雅山完成签到,获得积分20
12秒前
123发布了新的文献求助10
13秒前
yuanyuan发布了新的文献求助10
14秒前
14秒前
专注的芷完成签到 ,获得积分10
14秒前
15秒前
小小菜鸟发布了新的文献求助10
20秒前
霜糖发布了新的文献求助10
21秒前
21秒前
果冻橙完成签到,获得积分10
23秒前
隐形曼青应助喜宝采纳,获得10
23秒前
舒心的蜜蜂完成签到,获得积分20
24秒前
C·麦塔芬完成签到,获得积分10
25秒前
yhtu完成签到,获得积分10
26秒前
catyew完成签到 ,获得积分10
27秒前
论高等数学的无用性完成签到 ,获得积分10
29秒前
30秒前
合适千风发布了新的文献求助10
33秒前
34秒前
Qeuvilla发布了新的文献求助10
37秒前
37秒前
风中的断缘完成签到,获得积分10
37秒前
yyc完成签到,获得积分10
40秒前
VESong发布了新的文献求助10
41秒前
上官若男应助马霄鑫采纳,获得10
43秒前
44秒前
Kin_L完成签到,获得积分10
45秒前
乐观海燕完成签到 ,获得积分10
47秒前
彭于晏应助yuanyuan采纳,获得10
47秒前
50秒前
方方发布了新的文献求助10
50秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599516
求助须知:如何正确求助?哪些是违规求助? 4685150
关于积分的说明 14837969
捐赠科研通 4668610
什么是DOI,文献DOI怎么找? 2538003
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784