Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model

人工神经网络 本构方程 各向同性 应用数学 稳健性(进化) 结合属性 数学 人工智能 物理 计算机科学 有限元法 结构工程 工程类 基因 量子力学 生物化学 化学 纯数学
作者
Arunabha M. Roy,Suman Guha,Veera Sundararaghavan,Raymundo Arróyave
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:185: 105570-105570 被引量:16
标识
DOI:10.1016/j.jmps.2024.105570
摘要

In the present work, a physics-informed deep learning-based constitutive modeling approach has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling approach for representing complex and highly non-linear elastoplastic constitutive response prevents accurate predictions due to the absence of prior physical information. To mitigate this, we design an efficient physics-constrained training approach leveraging prior physics-driven optimization procedures. It has been achieved by formulating a highly physics-augmented multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions. Utilizing multiple densely connected independent feed-forward deep neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the model obtains the accurate elastoplastic solution by minimizing the proposed loss function. The strength and robustness of the approach have been demonstrated by accurately solving the benchmark problem where a plastically deformed isotropic shallow stratum has been subjected to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the performance and trainability of the model, extensive experiments on network architecture and various degrees of data-driven estimate shed light on significant improvement in terms of the accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features. Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the possibility of predicting solutions for different sets of applied stress and material parameters. Requiring significantly less training data, the framework can simultaneously enhance the accuracy of the solution and adaptability of training by demonstrating rapid convergence in critical loss components. The current study highlights a systematic development of a novel physics-informed deep learning approach which is quite generic in nature, yet robust and highly physics-augmented for transferability of known knowledge for vastly accelerated convergence with improved accuracy of predicting an accurate description of non-associative elastoplastic solution in the regime of continuum mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小新完成签到,获得积分10
刚刚
Allen完成签到,获得积分10
2秒前
2秒前
hui发布了新的文献求助10
3秒前
简啦啦完成签到,获得积分10
3秒前
daihq3完成签到,获得积分10
3秒前
mmb完成签到,获得积分10
4秒前
睡觉的猫发布了新的文献求助10
6秒前
LSH970829完成签到,获得积分10
6秒前
小鱼完成签到 ,获得积分10
7秒前
搜集达人应助zly采纳,获得10
7秒前
简啦啦发布了新的文献求助10
7秒前
aiai完成签到 ,获得积分10
8秒前
人生如梦完成签到,获得积分10
9秒前
水深三英尺完成签到,获得积分10
10秒前
sparks完成签到,获得积分10
12秒前
12秒前
13秒前
新一完成签到 ,获得积分10
13秒前
bkagyin应助Allen采纳,获得10
14秒前
大个应助华莉变身采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
乔婉完成签到,获得积分20
16秒前
学术菜鸡123发布了新的文献求助200
17秒前
17秒前
zhanglin发布了新的文献求助10
19秒前
天才J完成签到,获得积分10
20秒前
ZOE关注了科研通微信公众号
20秒前
adam完成签到,获得积分10
21秒前
一一应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
Yu应助科研通管家采纳,获得20
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
一一应助科研通管家采纳,获得10
23秒前
一一应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得30
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851