Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model

人工神经网络 本构方程 各向同性 应用数学 稳健性(进化) 结合属性 数学 人工智能 物理 计算机科学 有限元法 结构工程 工程类 纯数学 生物化学 化学 量子力学 基因
作者
Arunabha M. Roy,Suman Guha,Veera Sundararaghavan,Raymundo Arróyave
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:185: 105570-105570 被引量:16
标识
DOI:10.1016/j.jmps.2024.105570
摘要

In the present work, a physics-informed deep learning-based constitutive modeling approach has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling approach for representing complex and highly non-linear elastoplastic constitutive response prevents accurate predictions due to the absence of prior physical information. To mitigate this, we design an efficient physics-constrained training approach leveraging prior physics-driven optimization procedures. It has been achieved by formulating a highly physics-augmented multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions. Utilizing multiple densely connected independent feed-forward deep neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the model obtains the accurate elastoplastic solution by minimizing the proposed loss function. The strength and robustness of the approach have been demonstrated by accurately solving the benchmark problem where a plastically deformed isotropic shallow stratum has been subjected to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the performance and trainability of the model, extensive experiments on network architecture and various degrees of data-driven estimate shed light on significant improvement in terms of the accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features. Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the possibility of predicting solutions for different sets of applied stress and material parameters. Requiring significantly less training data, the framework can simultaneously enhance the accuracy of the solution and adaptability of training by demonstrating rapid convergence in critical loss components. The current study highlights a systematic development of a novel physics-informed deep learning approach which is quite generic in nature, yet robust and highly physics-augmented for transferability of known knowledge for vastly accelerated convergence with improved accuracy of predicting an accurate description of non-associative elastoplastic solution in the regime of continuum mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发发发完成签到,获得积分10
1秒前
李莹紫发布了新的文献求助10
1秒前
3秒前
wuxunxun2015发布了新的文献求助10
3秒前
偏偏完成签到 ,获得积分10
5秒前
深情安青应助轨迹采纳,获得10
6秒前
6秒前
思妍发布了新的文献求助10
7秒前
彭于晏应助李子琦采纳,获得10
7秒前
9秒前
10秒前
13秒前
1168163完成签到,获得积分10
14秒前
15秒前
16秒前
Lawrence完成签到,获得积分10
19秒前
19秒前
w2387018429完成签到,获得积分10
19秒前
21秒前
BowieHuang应助1101592875采纳,获得10
23秒前
科研通AI6.1应助毛子涵采纳,获得50
24秒前
Peter发布了新的文献求助30
25秒前
量子星尘发布了新的文献求助10
25秒前
王蕴伟完成签到,获得积分10
26秒前
丰富青文完成签到,获得积分10
27秒前
马铭泽发布了新的文献求助10
27秒前
ljw199606发布了新的文献求助10
27秒前
28秒前
anan发布了新的文献求助10
28秒前
28秒前
29秒前
重要橘子完成签到 ,获得积分10
30秒前
30秒前
31秒前
32秒前
32秒前
ATY发布了新的文献求助30
33秒前
icey发布了新的文献求助10
33秒前
34秒前
34秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744485
求助须知:如何正确求助?哪些是违规求助? 5420398
关于积分的说明 15350227
捐赠科研通 4884740
什么是DOI,文献DOI怎么找? 2626150
邀请新用户注册赠送积分活动 1574893
关于科研通互助平台的介绍 1531737