已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model

人工神经网络 本构方程 各向同性 应用数学 稳健性(进化) 结合属性 数学 人工智能 物理 计算机科学 有限元法 结构工程 工程类 纯数学 生物化学 化学 量子力学 基因
作者
Arunabha M. Roy,Suman Guha,Veera Sundararaghavan,Raymundo Arróyave
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:185: 105570-105570 被引量:16
标识
DOI:10.1016/j.jmps.2024.105570
摘要

In the present work, a physics-informed deep learning-based constitutive modeling approach has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling approach for representing complex and highly non-linear elastoplastic constitutive response prevents accurate predictions due to the absence of prior physical information. To mitigate this, we design an efficient physics-constrained training approach leveraging prior physics-driven optimization procedures. It has been achieved by formulating a highly physics-augmented multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions. Utilizing multiple densely connected independent feed-forward deep neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the model obtains the accurate elastoplastic solution by minimizing the proposed loss function. The strength and robustness of the approach have been demonstrated by accurately solving the benchmark problem where a plastically deformed isotropic shallow stratum has been subjected to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the performance and trainability of the model, extensive experiments on network architecture and various degrees of data-driven estimate shed light on significant improvement in terms of the accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features. Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the possibility of predicting solutions for different sets of applied stress and material parameters. Requiring significantly less training data, the framework can simultaneously enhance the accuracy of the solution and adaptability of training by demonstrating rapid convergence in critical loss components. The current study highlights a systematic development of a novel physics-informed deep learning approach which is quite generic in nature, yet robust and highly physics-augmented for transferability of known knowledge for vastly accelerated convergence with improved accuracy of predicting an accurate description of non-associative elastoplastic solution in the regime of continuum mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FLY完成签到,获得积分10
刚刚
tomato发布了新的文献求助10
1秒前
小昭完成签到,获得积分10
2秒前
shuhaha完成签到,获得积分10
3秒前
跳跃毒娘完成签到,获得积分10
7秒前
8秒前
sadh2完成签到 ,获得积分10
9秒前
fanqie完成签到,获得积分10
9秒前
跳跃毒娘发布了新的文献求助10
10秒前
10秒前
可爱的函函应助六六采纳,获得20
10秒前
11秒前
Li发布了新的文献求助10
11秒前
小二郎应助菜根谭采纳,获得10
13秒前
14秒前
小二郎应助xuz采纳,获得10
14秒前
Dr发布了新的文献求助10
15秒前
tomato完成签到,获得积分20
15秒前
nk完成签到 ,获得积分10
16秒前
倷倷完成签到 ,获得积分10
16秒前
17秒前
21秒前
liuli完成签到,获得积分20
21秒前
22秒前
Dr完成签到,获得积分10
22秒前
orixero应助科研通管家采纳,获得30
22秒前
爆米花应助科研通管家采纳,获得30
22秒前
23秒前
yang发布了新的文献求助10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
23秒前
23秒前
杜客完成签到,获得积分10
24秒前
Hello应助欧派果奶采纳,获得10
24秒前
周可语发布了新的文献求助10
26秒前
长歌发布了新的文献求助10
27秒前
shinn完成签到,获得积分10
28秒前
Shohan完成签到 ,获得积分10
30秒前
星辰大海应助Li采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855706
关于积分的说明 15106735
捐赠科研通 4822347
什么是DOI,文献DOI怎么找? 2581405
邀请新用户注册赠送积分活动 1535549
关于科研通互助平台的介绍 1493834