Enzyme-Free Dynamic DNA Reaction Networks for On-Demand Bioanalysis and Bioimaging

脱氧核酶 生物分析 纳米技术 合成生物学 DNA 生物分子 计算生物学 计算机科学 系统生物学 生物传感器 化学 生化工程 生物 生物化学 材料科学 工程类
作者
Shizhen He,Jinhua Shang,Yuqiu He,Fuan Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:6
标识
DOI:10.1021/acs.accounts.3c00676
摘要

ConspectusThe pursuit of in-depth studying the nature and law of life activity has been dominating current research fields, ranging from fundamental biological studies to applications that concern synthetic biology, bioanalysis, and clinical diagnosis. Motivated by this intention, the spatiotemporally controlled and in situ analysis of living cells has been a prospective branch by virtue of high-sensitivity imaging of key biomolecules, such as biomarkers. The past decades have attested that deoxyribonucleic acid (DNA), with biocompatibility, programmability, and customizable features, is a competitive biomaterial for constructing high-performance molecular sensing tools. To conquer the complexity of the wide extracellular–intracellular distribution of biomarkers, it is a meaningful breakthrough to explore high-efficiently amplified DNA circuits, which excel at operating complex yet captivating dynamic reaction networks for various bioapplications. In parallel, the multidimensional performance improvements of nucleic acid circuits, including the availability, detection sensitivity, and reliability, are critical parameters for realizing accurate imaging and cell regulation in bioanalysis.In this Account, we summarize our recent work on enzyme-free dynamic DNA reaction networks for bioanalysis from three main aspects: DNA circuitry functional extension of molecular recognition for epigenetic analysis and regulation, DNA circuitry amplification ability improvement for sensitive biomarker detection, and site-specific activation of DNA circuitry systems for reliable and accurate cell imaging. In the first part, we have designed an epigenetically responsive deoxyribozyme (DNAzyme) circuitry system for intracellular imaging and gene regulation, which enriches the possible analyzed species by chemically modifying conventional DNAzyme. For example, an exquisite N6-methyladenine (m6A)-caged DNAzyme was built for achieving the precise FTO (fat mass and obesity-associated protein)-directed gene regulation. In addition, varieties of DNAzyme-based nanoplatforms with self-sufficient cofactor suppliers were assembled, which subdued the speed-limiting hardness of DNAzyme cofactors in live-cell applications. In the second part, we have developed a series of hierarchically assembled DNA circuitry systems to improve the signal transduction ability of traditional DNA circuits. First, the amplification ability of the DNAzyme circuit has been significantly enhanced via several heterogeneously or homogeneously concatenated circuitry models. Furthermore, a feedback reaction pathway was integrated into these concatenated circuits, thus dramatically increasing the amplification efficiency. Second, considering the complex cellular environment, we have simplified the redundancy of multicomponents or reaction procedures of traditional cascaded circuits, relying on the minimal component complexity and merely one modular catalytic reaction, which guaranteed high cell-delivering uniformity while fostering reaction kinetics and analysis reliability. In the third part, we have constructed in-cell-selective endogenous-stimulated DNA circuitry systems via the multiply guaranteed molecular recognitions, which could not only eliminate the signal leakage, but could also retain its on-site and multiplex signal amplification. Based on the site-specific activation strategy, more circuitry availability in cellular scenarios has been acquired for reliable and precise biological sensing and regulation. These enzyme-free dynamic DNA reaction networks demonstrate the purpose-to-concreteness engineering for tailored multimolecule recognition and multiple signal amplification, achieving high-gain signal transduction and high-reliability targeted imaging in bioanalysis. We envision that the enzyme-free dynamic DNA reaction network can contribute to more bioanalytical layouts, which will facilitate the progression of clinical diagnosis and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书生完成签到,获得积分10
1秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
哎呀呀完成签到,获得积分10
5秒前
liumu完成签到 ,获得积分10
7秒前
xuedan3000完成签到 ,获得积分10
8秒前
熊泰山完成签到 ,获得积分10
8秒前
10秒前
人参跳芭蕾完成签到 ,获得积分10
10秒前
中草药完成签到,获得积分10
11秒前
高手如林完成签到,获得积分10
11秒前
轩辕中蓝完成签到 ,获得积分10
11秒前
橘子石榴完成签到 ,获得积分10
11秒前
想吃麻辣烫完成签到 ,获得积分10
11秒前
LRxxx完成签到 ,获得积分10
12秒前
pgjwl应助pigeonKimi采纳,获得10
14秒前
风姿物语完成签到,获得积分10
14秒前
15秒前
gzf完成签到 ,获得积分10
15秒前
郝君颖完成签到 ,获得积分10
15秒前
围着那只小兔转完成签到 ,获得积分10
15秒前
16秒前
大气傲易完成签到 ,获得积分10
16秒前
甄人达完成签到,获得积分10
17秒前
赘婿应助如约而至采纳,获得10
18秒前
冷不丁完成签到,获得积分10
19秒前
Linux2000Pro完成签到,获得积分10
20秒前
小曲完成签到 ,获得积分10
21秒前
shrike发布了新的文献求助10
22秒前
杏梨完成签到,获得积分10
22秒前
善良海云完成签到,获得积分10
23秒前
xfy完成签到,获得积分10
23秒前
24秒前
24秒前
yu完成签到 ,获得积分10
25秒前
27秒前
irvinzp完成签到,获得积分10
27秒前
宁夕完成签到 ,获得积分10
29秒前
碗碗豆喵完成签到 ,获得积分10
29秒前
shrike完成签到,获得积分10
30秒前
如约而至发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134053
求助须知:如何正确求助?哪些是违规求助? 2784853
关于积分的说明 7768983
捐赠科研通 2440314
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792