Cellular nucleus image-based smarter microscope system for single cell analysis

显微镜 计算机科学 卷积神经网络 吞吐量 软件 高含量筛选 自动化 单细胞分析 人工智能 显微镜 图像处理 过程(计算) 计算机硬件 计算机视觉 图像(数学) 化学 细胞 光学 工程类 操作系统 物理 机械工程 电信 生物化学 程序设计语言 无线
作者
Wentao Wang,Lin Yang,Hang Sun,Xiaohong Peng,Junjie Yuan,Wenhao Zhong,Jinqi Chen,Xin He,Lingzhi Ye,Yi Zeng,Zhifan Gao,Yunhui Li,Xiangmeng Qu
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:250: 116052-116052 被引量:6
标识
DOI:10.1016/j.bios.2024.116052
摘要

Cell imaging technology is undoubtedly a powerful tool for studying single-cell heterogeneity due to its non-invasive and visual advantages. It covers microscope hardware, software, and image analysis techniques, which are hindered by low throughput owing to abundant hands-on time and expertise. Herein, a cellular nucleus image-based smarter microscope system for single-cell analysis is reported to achieve high-throughput analysis and high-content detection of cells. By combining the hardware of an automatic fluorescence microscope and multi-object recognition/acquisition software, we have achieved more advanced process automation with the assistance of Robotic Process Automation (RPA), which realizes a high-throughput collection of single-cell images. Automated acquisition of single-cell images has benefits beyond ease and throughout and can lead to uniform standard and higher quality images. We further constructed a single-cell image database-based convolutional neural network (Efficient Convolutional Neural Network, E-CNN) exceeding 20618 single-cell nucleus images. Computational analysis of large and complex data sets enhances the content and efficiency of single-cell analysis with the assistance of Artificial Intelligence (AI), which breaks through the super-resolution microscope's hardware limitation, such as specialized light sources with specific wavelengths, advanced optical components, and high-performance graphics cards. Our system can identify single-cell nucleus images that cannot be artificially distinguished with an accuracy of 95.3%. Overall, we build an ordinary microscope into a high-throughput analysis and high-content smarter microscope system, making it a candidate tool for Imaging cytology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
受伤的水瑶完成签到,获得积分10
1秒前
巩泓辰完成签到,获得积分10
1秒前
宋宇骐完成签到,获得积分10
2秒前
小瑞完成签到 ,获得积分10
2秒前
ZOE应助白桃味的夏采纳,获得20
2秒前
AAA发布了新的文献求助10
3秒前
3秒前
zgdzhj发布了新的文献求助10
4秒前
顺利雁桃发布了新的文献求助10
4秒前
5秒前
cell发布了新的文献求助10
5秒前
今后应助青塘龙仔采纳,获得10
5秒前
5秒前
Orange应助青塘龙仔采纳,获得10
5秒前
5秒前
zwq发布了新的文献求助10
5秒前
科研小垃圾完成签到,获得积分10
5秒前
香蕉觅云应助青塘龙仔采纳,获得10
5秒前
5秒前
Lucas应助青塘龙仔采纳,获得10
5秒前
bkagyin应助青塘龙仔采纳,获得10
5秒前
所所应助青塘龙仔采纳,获得10
5秒前
李健应助青塘龙仔采纳,获得10
5秒前
桐桐应助栖木采纳,获得10
6秒前
7秒前
解安珊完成签到,获得积分10
7秒前
干净的迎荷完成签到,获得积分10
8秒前
若初拾光发布了新的文献求助10
8秒前
蚂蚁完成签到,获得积分10
8秒前
鸿鹄完成签到,获得积分20
8秒前
巴图鲁完成签到,获得积分10
8秒前
8秒前
孤独寻云完成签到,获得积分10
8秒前
chennx发布了新的文献求助10
10秒前
现代的岩完成签到,获得积分10
10秒前
李Li完成签到,获得积分10
12秒前
乐只完成签到,获得积分10
12秒前
充电宝应助鸿鹄采纳,获得10
12秒前
十三发布了新的文献求助10
13秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907