Cellular nucleus image-based smarter microscope system for single cell analysis

显微镜 计算机科学 卷积神经网络 吞吐量 软件 高含量筛选 自动化 单细胞分析 人工智能 显微镜 图像处理 过程(计算) 计算机硬件 计算机视觉 图像(数学) 化学 细胞 光学 工程类 操作系统 物理 机械工程 电信 生物化学 程序设计语言 无线
作者
Wentao Wang,Lin Yang,Hang Sun,Xiaohong Peng,Junjie Yuan,Wenhao Zhong,Jinqi Chen,Xin He,Lingzhi Ye,Yi Zeng,Zhifan Gao,Yunhui Li,Xiangmeng Qu
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:250: 116052-116052 被引量:6
标识
DOI:10.1016/j.bios.2024.116052
摘要

Cell imaging technology is undoubtedly a powerful tool for studying single-cell heterogeneity due to its non-invasive and visual advantages. It covers microscope hardware, software, and image analysis techniques, which are hindered by low throughput owing to abundant hands-on time and expertise. Herein, a cellular nucleus image-based smarter microscope system for single-cell analysis is reported to achieve high-throughput analysis and high-content detection of cells. By combining the hardware of an automatic fluorescence microscope and multi-object recognition/acquisition software, we have achieved more advanced process automation with the assistance of Robotic Process Automation (RPA), which realizes a high-throughput collection of single-cell images. Automated acquisition of single-cell images has benefits beyond ease and throughout and can lead to uniform standard and higher quality images. We further constructed a single-cell image database-based convolutional neural network (Efficient Convolutional Neural Network, E-CNN) exceeding 20618 single-cell nucleus images. Computational analysis of large and complex data sets enhances the content and efficiency of single-cell analysis with the assistance of Artificial Intelligence (AI), which breaks through the super-resolution microscope's hardware limitation, such as specialized light sources with specific wavelengths, advanced optical components, and high-performance graphics cards. Our system can identify single-cell nucleus images that cannot be artificially distinguished with an accuracy of 95.3%. Overall, we build an ordinary microscope into a high-throughput analysis and high-content smarter microscope system, making it a candidate tool for Imaging cytology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
Jasper应助半夏采纳,获得10
2秒前
可爱的函函应助ll采纳,获得10
2秒前
倩_完成签到,获得积分10
2秒前
djxdjt完成签到,获得积分10
2秒前
3秒前
3秒前
王秋田应助罗梦芬采纳,获得20
4秒前
4秒前
4秒前
4秒前
熠熠完成签到,获得积分10
4秒前
whynot发布了新的文献求助10
4秒前
4秒前
现代山雁发布了新的文献求助10
5秒前
5秒前
LLLLLL发布了新的文献求助10
5秒前
香蕉觅云应助朝俞采纳,获得10
5秒前
知名不具完成签到 ,获得积分10
6秒前
wei发布了新的文献求助10
7秒前
7秒前
影子发布了新的文献求助10
7秒前
油麦菜完成签到,获得积分10
8秒前
mafukairi发布了新的文献求助30
8秒前
hanlin完成签到,获得积分10
9秒前
利于蓄力发布了新的文献求助10
9秒前
清心发布了新的文献求助10
10秒前
11秒前
11秒前
wanci应助科研废物采纳,获得10
12秒前
隐形曼青应助chen采纳,获得10
12秒前
XRH完成签到,获得积分10
13秒前
13秒前
whynot完成签到,获得积分10
13秒前
彩色阳光完成签到,获得积分10
13秒前
浮游应助任性宇豪采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884713
求助须知:如何正确求助?哪些是违规求助? 4169858
关于积分的说明 12939294
捐赠科研通 3930463
什么是DOI,文献DOI怎么找? 2156559
邀请新用户注册赠送积分活动 1174925
关于科研通互助平台的介绍 1079670