Cellular nucleus image-based smarter microscope system for single cell analysis

显微镜 计算机科学 卷积神经网络 吞吐量 软件 高含量筛选 自动化 单细胞分析 人工智能 显微镜 图像处理 过程(计算) 计算机硬件 计算机视觉 图像(数学) 化学 细胞 光学 工程类 操作系统 物理 机械工程 电信 生物化学 程序设计语言 无线
作者
Wentao Wang,Lin Yang,Hang Sun,Xiaohong Peng,Junjie Yuan,Wenhao Zhong,Jinqi Chen,Xin He,Lingzhi Ye,Yi Zeng,Zhifan Gao,Yunhui Li,Xiangmeng Qu
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:250: 116052-116052 被引量:6
标识
DOI:10.1016/j.bios.2024.116052
摘要

Cell imaging technology is undoubtedly a powerful tool for studying single-cell heterogeneity due to its non-invasive and visual advantages. It covers microscope hardware, software, and image analysis techniques, which are hindered by low throughput owing to abundant hands-on time and expertise. Herein, a cellular nucleus image-based smarter microscope system for single-cell analysis is reported to achieve high-throughput analysis and high-content detection of cells. By combining the hardware of an automatic fluorescence microscope and multi-object recognition/acquisition software, we have achieved more advanced process automation with the assistance of Robotic Process Automation (RPA), which realizes a high-throughput collection of single-cell images. Automated acquisition of single-cell images has benefits beyond ease and throughout and can lead to uniform standard and higher quality images. We further constructed a single-cell image database-based convolutional neural network (Efficient Convolutional Neural Network, E-CNN) exceeding 20618 single-cell nucleus images. Computational analysis of large and complex data sets enhances the content and efficiency of single-cell analysis with the assistance of Artificial Intelligence (AI), which breaks through the super-resolution microscope's hardware limitation, such as specialized light sources with specific wavelengths, advanced optical components, and high-performance graphics cards. Our system can identify single-cell nucleus images that cannot be artificially distinguished with an accuracy of 95.3%. Overall, we build an ordinary microscope into a high-throughput analysis and high-content smarter microscope system, making it a candidate tool for Imaging cytology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助zhuzhu采纳,获得10
刚刚
1秒前
VV完成签到,获得积分10
1秒前
李健应助平淡惜灵采纳,获得10
4秒前
名雪完成签到,获得积分10
4秒前
Alina发布了新的文献求助10
4秒前
wenwen完成签到,获得积分10
4秒前
八格牙路完成签到,获得积分10
4秒前
lxz发布了新的文献求助10
5秒前
6秒前
田様应助实验狗采纳,获得10
6秒前
大模型应助HCT采纳,获得10
6秒前
6秒前
陈文学完成签到,获得积分10
6秒前
7秒前
Zhuzhu完成签到 ,获得积分10
8秒前
8秒前
CR7应助清脆又晴采纳,获得20
9秒前
快乐的发布了新的文献求助10
9秒前
10秒前
10秒前
顽固的肉完成签到,获得积分10
11秒前
zhuzhu发布了新的文献求助10
12秒前
12秒前
研友_VZG7GZ应助彭佳乐采纳,获得10
13秒前
13秒前
小马甲应助哈哈哈哈哈采纳,获得10
13秒前
kuhei完成签到,获得积分10
13秒前
陈文学发布了新的文献求助10
14秒前
念暖完成签到 ,获得积分10
14秒前
NexusExplorer应助唐_采纳,获得10
14秒前
dypdyp应助H28G采纳,获得10
15秒前
11发布了新的文献求助20
15秒前
叶子发布了新的文献求助10
15秒前
mlm完成签到,获得积分10
16秒前
16秒前
魔术师完成签到,获得积分10
17秒前
STH完成签到 ,获得积分10
17秒前
实验狗发布了新的文献求助10
17秒前
kuhei发布了新的文献求助10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371