过电位
金属有机骨架
析氧
材料科学
拉曼光谱
化学工程
化学
无机化学
纳米技术
光化学
物理化学
电化学
吸附
光学
物理
工程类
电极
作者
Xiao Wang,Wei Zhou,Shengliang Zhai,Xiaokang Chen,Peng Zheng,Zhi Liu,Weiqiao Deng,Hao Wu
标识
DOI:10.1002/ange.202400323
摘要
Metal‐organic frameworks (MOFs) have emerged as promising oxygen evolution reaction (OER) electrocatalysts. Chemically bonded MOFs on supports are desirable yet lacking in routine synthesis, as they may allow variable structural evolution and the underlying structure‐activity relationship to be disclosed. Herein, direct MOF synthesis is achieved by an organic acid‐etching strategy (AES). Using π‐conjugated ferrocene (Fc) dicarboxylic acid as the etching agent and organic ligand, a series of MFc‐MOF (M = Ni, Co, Fe, Zn) nanosheets are synthesized on the metal supports. The crystal structure is studied using X‐ray diffraction and low‐dose transmission electron microscopy, which is quasi‐lattice‐matched with that of the metal, enabling in‐situ MOF growth. Operando Raman and attenuated total reflectance Fourier transform infrared spectroscopy disclose that the NiFc‐MOF features dynamic structural rebuilding during OER. The reconstructed one showing optimized electronic structures with an upshifted total d‐band center, high M‐O bonding state occupancy, and localized electrons on adsorbates indicated by density functional theory calculations, exhibits outstanding OER performance with a fairly low overpotential (130 mV at 10 mA cm‐2) and good stability (144 h). The newly established approach for direct MOF synthesis and structural reconstruction disclosure stimulate the development of more prudent catalysts for advancing OER.
科研通智能强力驱动
Strongly Powered by AbleSci AI