AbDPP: Target‐oriented antibody design with pretraining and prior biological structure knowledge

抗体 抗体库 序列(生物学) 一致性(知识库) 计算生物学 人工智能 计算机科学 机器学习 生物 免疫学 遗传学
作者
Chenglei Yu,Xiangtian Lin,Yuxuan Cheng,Jiahong Xu,Li Wang,Yuyao Yan,Yanting Huang,Lanxuan Liu,Wei Zhao,Qin Zhao,John Wang,Lei Zhang
出处
期刊:Proteins [Wiley]
卷期号:92 (10): 1147-1160
标识
DOI:10.1002/prot.26676
摘要

Abstract Antibodies represent a crucial class of complex protein therapeutics and are essential in the treatment of a wide range of human diseases. Traditional antibody discovery methods, such as hybridoma and phage display technologies, suffer from limitations including inefficiency and a restricted exploration of the immense space of potential antibodies. To overcome these limitations, we propose a novel method for generating antibody sequences using deep learning algorithms called AbDPP (target‐oriented antibody design with pretraining and prior biological knowledge). AbDPP integrates a pretrained model for antibodies with biological region information, enabling the effective use of vast antibody sequence data and intricate biological system understanding to generate sequences. To target specific antigens, AbDPP incorporates an antibody property evaluation model, which is further optimized based on evaluation results to generate more focused sequences. The efficacy of AbDPP was assessed through multiple experiments, evaluating its ability to generate amino acids, improve neutralization and binding, maintain sequence consistency, and improve sequence diversity. Results demonstrated that AbDPP outperformed other methods in terms of the performance and quality of generated sequences, showcasing its potential to enhance antibody design and screening efficiency. In summary, this study contributes to the field by offering an innovative deep learning‐based method for antibody generation, addressing some limitations of traditional approaches, and underscoring the importance of integrating a specific antibody pretrained model and the biological properties of antibodies in generating novel sequences. The code and documentation underlying this article are freely available at https://github.com/zlfyj/AbDPP .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助GaPb氘壬采纳,获得10
7秒前
Orange应助lalalala采纳,获得10
8秒前
CeciliaLee完成签到,获得积分20
8秒前
苏晓醒完成签到,获得积分10
12秒前
浮游呦呦完成签到,获得积分10
13秒前
13秒前
大模型应助dearcih采纳,获得20
14秒前
16秒前
17秒前
lalalala完成签到,获得积分20
17秒前
Wink14551发布了新的文献求助100
19秒前
称心访琴完成签到,获得积分10
20秒前
antonx完成签到,获得积分10
21秒前
CCCMJ发布了新的文献求助10
21秒前
CeciliaLee发布了新的文献求助10
22秒前
顺利的傲云完成签到,获得积分10
23秒前
24秒前
天真小虾米完成签到,获得积分20
24秒前
ICY完成签到,获得积分10
24秒前
27秒前
28秒前
犹豫花卷发布了新的文献求助10
28秒前
28秒前
32秒前
33秒前
单小芫发布了新的文献求助10
34秒前
36秒前
走啊走啊走完成签到,获得积分10
36秒前
38秒前
阿居应助yywa采纳,获得10
38秒前
清秀灵薇完成签到,获得积分10
38秒前
Coconut完成签到,获得积分10
39秒前
科目三应助ooowindy采纳,获得10
40秒前
shawn完成签到,获得积分10
42秒前
可爱的函函应助香蕉茹妖采纳,获得10
42秒前
liusr1207发布了新的文献求助30
42秒前
科研通AI5应助JACk采纳,获得20
43秒前
Lucas应助ooowindy采纳,获得10
43秒前
43秒前
43秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479620
求助须知:如何正确求助?哪些是违规求助? 3070165
关于积分的说明 9116969
捐赠科研通 2761926
什么是DOI,文献DOI怎么找? 1515594
邀请新用户注册赠送积分活动 700994
科研通“疑难数据库(出版商)”最低求助积分说明 699985