GrapeLeafNet: A Dual-Track Feature Fusion Network With Inception-ResNet and Shuffle-Transformer for Accurate Grape Leaf Disease Identification

残差神经网络 计算机科学 鉴定(生物学) 变压器 对偶(语法数字) 人工智能 模式识别(心理学) 人工神经网络 工程类 电气工程 艺术 植物 文学类 电压 生物
作者
R. Karthik,R. Menaka,S. Ompirakash,Pragadeesh Murugan,M. Meenakashi,Sindhia Lingaswamy,Daehan Won
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 19612-19624 被引量:4
标识
DOI:10.1109/access.2024.3361044
摘要

Grapes are a widely cultivated crop in the horticultural industry, renowned for their unique flavor and nutritional benefits. However, this crop is highly susceptible to various diseases that can cause significant reductions in yield and quality, resulting in considerable financial losses. Therefore, it is imperative to identify these diseases to effectively manage their spread. Traditionally, the identification of grape leaf diseases has relied on scientific expertise and observational skills. However, with the advent of deep learning methods, it is now feasible to recognize disease patterns from images of infected leaves. In this research, we propose a novel dual-track feature fusion network titled 'GrapeLeafNet' for detecting grape leaf disease. It employs a dual-track feature fusion approach, combining Inception-ResNet blocks with CBAM for local feature extraction and Shuffle-Transformer for global feature extraction. The first track uses Inception-ResNet blocks to represent features at multiple scales and map significant features, and CBAM captures significant spatial and channel dependencies. The second track employs Shuffle-Transformer to extract long-term dependencies and complex global features in images. The extracted features are then fused using Coordinate attention, enabling the network to capture both local and global contextual information. Experimental results on the Grape leaf disease dataset from Plant Village demonstrate the effectiveness of the proposed network, achieving an accuracy of 99.56%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BaekHyun完成签到 ,获得积分10
刚刚
mengdong发布了新的文献求助10
刚刚
清脆水之完成签到 ,获得积分10
1秒前
Simonzenith完成签到,获得积分10
1秒前
qwepirt发布了新的文献求助10
2秒前
贪玩丹秋发布了新的文献求助10
2秒前
山野下应助enochc采纳,获得10
2秒前
欣忆完成签到 ,获得积分10
2秒前
开放思远完成签到,获得积分10
2秒前
传奇3应助清脆的乐荷采纳,获得10
2秒前
六个大洋完成签到 ,获得积分10
3秒前
Lucas应助苏苏苏采纳,获得10
3秒前
科目三应助ljw采纳,获得10
3秒前
4秒前
wang发布了新的文献求助10
5秒前
关心发布了新的文献求助30
5秒前
5秒前
yukang完成签到,获得积分10
6秒前
沙滩的收印完成签到,获得积分10
6秒前
阿枫完成签到,获得积分10
6秒前
耍酷谷云发布了新的文献求助10
6秒前
6秒前
6秒前
词多多完成签到,获得积分10
7秒前
开开心心的开心完成签到,获得积分10
7秒前
8秒前
dm驳回了酷波er应助
8秒前
量子星尘发布了新的文献求助10
8秒前
英姑应助沐允贤采纳,获得10
8秒前
ASDS完成签到,获得积分10
8秒前
9秒前
impala完成签到,获得积分10
9秒前
ddjl完成签到,获得积分20
9秒前
大胆的忆雪完成签到,获得积分10
9秒前
枫溪完成签到,获得积分10
10秒前
10秒前
dd完成签到,获得积分10
10秒前
10秒前
踏实志泽发布了新的文献求助10
10秒前
xiyue发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328