GrapeLeafNet: A Dual-Track Feature Fusion Network With Inception-ResNet and Shuffle-Transformer for Accurate Grape Leaf Disease Identification

残差神经网络 计算机科学 鉴定(生物学) 变压器 对偶(语法数字) 人工智能 模式识别(心理学) 人工神经网络 工程类 电气工程 艺术 植物 文学类 电压 生物
作者
R. Karthik,R. Menaka,S. Ompirakash,Pragadeesh Murugan,M. Meenakashi,Sindhia Lingaswamy,Daehan Won
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 19612-19624 被引量:4
标识
DOI:10.1109/access.2024.3361044
摘要

Grapes are a widely cultivated crop in the horticultural industry, renowned for their unique flavor and nutritional benefits. However, this crop is highly susceptible to various diseases that can cause significant reductions in yield and quality, resulting in considerable financial losses. Therefore, it is imperative to identify these diseases to effectively manage their spread. Traditionally, the identification of grape leaf diseases has relied on scientific expertise and observational skills. However, with the advent of deep learning methods, it is now feasible to recognize disease patterns from images of infected leaves. In this research, we propose a novel dual-track feature fusion network titled 'GrapeLeafNet' for detecting grape leaf disease. It employs a dual-track feature fusion approach, combining Inception-ResNet blocks with CBAM for local feature extraction and Shuffle-Transformer for global feature extraction. The first track uses Inception-ResNet blocks to represent features at multiple scales and map significant features, and CBAM captures significant spatial and channel dependencies. The second track employs Shuffle-Transformer to extract long-term dependencies and complex global features in images. The extracted features are then fused using Coordinate attention, enabling the network to capture both local and global contextual information. Experimental results on the Grape leaf disease dataset from Plant Village demonstrate the effectiveness of the proposed network, achieving an accuracy of 99.56%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小狗流下了眼泪完成签到,获得积分10
1秒前
zinc完成签到,获得积分10
1秒前
1秒前
Z-先森完成签到,获得积分0
4秒前
phobeeee完成签到 ,获得积分10
4秒前
眯眯眼的逍遥完成签到,获得积分10
5秒前
大模型应助li采纳,获得10
5秒前
。。发布了新的文献求助10
5秒前
xlj完成签到,获得积分20
7秒前
ll完成签到,获得积分20
8秒前
小张不慌发布了新的文献求助10
8秒前
俏皮丸子应助轻松毛豆采纳,获得10
8秒前
10秒前
Zhang完成签到,获得积分10
11秒前
bkagyin应助蓝光小宇采纳,获得10
11秒前
所所应助时生111采纳,获得10
11秒前
上官若男应助guobin采纳,获得10
13秒前
把心放在肚里应助xlj采纳,获得10
13秒前
大力沛萍发布了新的文献求助10
15秒前
Ava应助绿葡萄准备潜水采纳,获得10
15秒前
16秒前
18秒前
时生111发布了新的文献求助10
21秒前
sunny完成签到 ,获得积分20
24秒前
25秒前
852应助科研通管家采纳,获得10
25秒前
乐观忆灵应助科研通管家采纳,获得20
25秒前
毛豆应助科研通管家采纳,获得10
25秒前
毛豆应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
26秒前
毛豆应助科研通管家采纳,获得10
26秒前
Owen应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
彭于晏应助科研通管家采纳,获得10
26秒前
单纯访枫完成签到 ,获得积分10
26秒前
abbywu应助时生111采纳,获得10
26秒前
27秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464525
求助须知:如何正确求助?哪些是违规求助? 3057942
关于积分的说明 9059097
捐赠科研通 2748071
什么是DOI,文献DOI怎么找? 1507718
科研通“疑难数据库(出版商)”最低求助积分说明 696632
邀请新用户注册赠送积分活动 696290