GrapeLeafNet: A Dual-Track Feature Fusion Network With Inception-ResNet and Shuffle-Transformer for Accurate Grape Leaf Disease Identification

残差神经网络 计算机科学 鉴定(生物学) 变压器 对偶(语法数字) 人工智能 模式识别(心理学) 人工神经网络 工程类 电气工程 植物 生物 文学类 艺术 电压
作者
R. Karthik,R. Menaka,S. Ompirakash,Pragadeesh Murugan,M. Meenakashi,Sindhia Lingaswamy,Daehan Won
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 19612-19624 被引量:4
标识
DOI:10.1109/access.2024.3361044
摘要

Grapes are a widely cultivated crop in the horticultural industry, renowned for their unique flavor and nutritional benefits. However, this crop is highly susceptible to various diseases that can cause significant reductions in yield and quality, resulting in considerable financial losses. Therefore, it is imperative to identify these diseases to effectively manage their spread. Traditionally, the identification of grape leaf diseases has relied on scientific expertise and observational skills. However, with the advent of deep learning methods, it is now feasible to recognize disease patterns from images of infected leaves. In this research, we propose a novel dual-track feature fusion network titled 'GrapeLeafNet' for detecting grape leaf disease. It employs a dual-track feature fusion approach, combining Inception-ResNet blocks with CBAM for local feature extraction and Shuffle-Transformer for global feature extraction. The first track uses Inception-ResNet blocks to represent features at multiple scales and map significant features, and CBAM captures significant spatial and channel dependencies. The second track employs Shuffle-Transformer to extract long-term dependencies and complex global features in images. The extracted features are then fused using Coordinate attention, enabling the network to capture both local and global contextual information. Experimental results on the Grape leaf disease dataset from Plant Village demonstrate the effectiveness of the proposed network, achieving an accuracy of 99.56%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouzhou发布了新的文献求助10
刚刚
DAYE发布了新的文献求助10
刚刚
刚刚
刚刚
牛牛牛完成签到,获得积分10
刚刚
BellaBB发布了新的文献求助10
刚刚
幽默与研完成签到,获得积分10
1秒前
木棉完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助ljkshr采纳,获得10
1秒前
2秒前
3秒前
18275412695发布了新的文献求助10
3秒前
3秒前
贯云发布了新的文献求助10
3秒前
CC完成签到 ,获得积分10
3秒前
3秒前
英俊的铭应助晴文采纳,获得10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
不争馒头争口气完成签到,获得积分10
4秒前
稳重绿旋发布了新的文献求助10
5秒前
辣子鱼完成签到,获得积分10
5秒前
yfy_fairy发布了新的文献求助10
5秒前
sxwzssyj完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
言诚开发布了新的文献求助10
7秒前
科研小白发布了新的文献求助10
7秒前
传奇3应助啊啊啊采纳,获得10
7秒前
372925abc完成签到,获得积分10
8秒前
ZM发布了新的文献求助10
9秒前
9秒前
9秒前
殷硕完成签到,获得积分10
10秒前
11秒前
一一应助不才采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530