GrapeLeafNet: A Dual-Track Feature Fusion Network With Inception-ResNet and Shuffle-Transformer for Accurate Grape Leaf Disease Identification

残差神经网络 计算机科学 鉴定(生物学) 变压器 对偶(语法数字) 人工智能 模式识别(心理学) 人工神经网络 工程类 电气工程 植物 生物 文学类 艺术 电压
作者
R. Karthik,R. Menaka,S. Ompirakash,Pragadeesh Murugan,M. Meenakashi,Sindhia Lingaswamy,Daehan Won
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 19612-19624 被引量:4
标识
DOI:10.1109/access.2024.3361044
摘要

Grapes are a widely cultivated crop in the horticultural industry, renowned for their unique flavor and nutritional benefits. However, this crop is highly susceptible to various diseases that can cause significant reductions in yield and quality, resulting in considerable financial losses. Therefore, it is imperative to identify these diseases to effectively manage their spread. Traditionally, the identification of grape leaf diseases has relied on scientific expertise and observational skills. However, with the advent of deep learning methods, it is now feasible to recognize disease patterns from images of infected leaves. In this research, we propose a novel dual-track feature fusion network titled 'GrapeLeafNet' for detecting grape leaf disease. It employs a dual-track feature fusion approach, combining Inception-ResNet blocks with CBAM for local feature extraction and Shuffle-Transformer for global feature extraction. The first track uses Inception-ResNet blocks to represent features at multiple scales and map significant features, and CBAM captures significant spatial and channel dependencies. The second track employs Shuffle-Transformer to extract long-term dependencies and complex global features in images. The extracted features are then fused using Coordinate attention, enabling the network to capture both local and global contextual information. Experimental results on the Grape leaf disease dataset from Plant Village demonstrate the effectiveness of the proposed network, achieving an accuracy of 99.56%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyt096发布了新的文献求助10
刚刚
大力盼易完成签到,获得积分10
1秒前
温暖芒果发布了新的文献求助10
1秒前
123发布了新的文献求助10
2秒前
ding应助七面东风采纳,获得10
2秒前
田様应助yyyf采纳,获得10
2秒前
carl发布了新的文献求助10
3秒前
cancan发布了新的文献求助10
4秒前
华生发布了新的文献求助10
4秒前
混子发布了新的文献求助10
5秒前
zliaoyuan完成签到,获得积分10
5秒前
6秒前
小蘑菇应助小白菜采纳,获得10
6秒前
8秒前
大力盼易关注了科研通微信公众号
10秒前
我是老大应助的的的维尔采纳,获得10
10秒前
11秒前
英姑应助111采纳,获得10
11秒前
11秒前
11秒前
11秒前
yyyf发布了新的文献求助10
12秒前
带线一去不回完成签到,获得积分10
12秒前
xielixin2001完成签到,获得积分10
13秒前
13秒前
14秒前
meiyu完成签到,获得积分10
14秒前
zyt096完成签到,获得积分10
14秒前
嗨好完成签到,获得积分10
15秒前
情怀应助傻傻的霆采纳,获得10
15秒前
asdfqwer应助st采纳,获得20
16秒前
16秒前
xielixin2001发布了新的文献求助10
16秒前
17秒前
hyr发布了新的文献求助10
17秒前
17秒前
杰杰发布了新的文献求助10
18秒前
ssl关闭了ssl文献求助
18秒前
爱听歌笑柳完成签到,获得积分10
18秒前
无极微光应助HY采纳,获得20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572125
求助须知:如何正确求助?哪些是违规求助? 4657321
关于积分的说明 14720115
捐赠科研通 4598123
什么是DOI,文献DOI怎么找? 2523566
邀请新用户注册赠送积分活动 1494346
关于科研通互助平台的介绍 1464416