亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GrapeLeafNet: A Dual-Track Feature Fusion Network With Inception-ResNet and Shuffle-Transformer for Accurate Grape Leaf Disease Identification

残差神经网络 计算机科学 鉴定(生物学) 变压器 对偶(语法数字) 人工智能 模式识别(心理学) 人工神经网络 工程类 电气工程 植物 生物 文学类 艺术 电压
作者
R. Karthik,R. Menaka,S. Ompirakash,Pragadeesh Murugan,M. Meenakashi,Sindhia Lingaswamy,Daehan Won
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 19612-19624 被引量:4
标识
DOI:10.1109/access.2024.3361044
摘要

Grapes are a widely cultivated crop in the horticultural industry, renowned for their unique flavor and nutritional benefits. However, this crop is highly susceptible to various diseases that can cause significant reductions in yield and quality, resulting in considerable financial losses. Therefore, it is imperative to identify these diseases to effectively manage their spread. Traditionally, the identification of grape leaf diseases has relied on scientific expertise and observational skills. However, with the advent of deep learning methods, it is now feasible to recognize disease patterns from images of infected leaves. In this research, we propose a novel dual-track feature fusion network titled 'GrapeLeafNet' for detecting grape leaf disease. It employs a dual-track feature fusion approach, combining Inception-ResNet blocks with CBAM for local feature extraction and Shuffle-Transformer for global feature extraction. The first track uses Inception-ResNet blocks to represent features at multiple scales and map significant features, and CBAM captures significant spatial and channel dependencies. The second track employs Shuffle-Transformer to extract long-term dependencies and complex global features in images. The extracted features are then fused using Coordinate attention, enabling the network to capture both local and global contextual information. Experimental results on the Grape leaf disease dataset from Plant Village demonstrate the effectiveness of the proposed network, achieving an accuracy of 99.56%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
Soleil发布了新的文献求助10
6秒前
执着亿先发布了新的文献求助10
9秒前
是个哑巴发布了新的文献求助10
10秒前
10秒前
Xiaoping完成签到 ,获得积分10
10秒前
于涵艺完成签到,获得积分10
12秒前
汉堡包应助123采纳,获得10
13秒前
明亮紫易完成签到,获得积分10
15秒前
不信人间有白头完成签到 ,获得积分10
17秒前
冉亦完成签到,获得积分10
20秒前
彭于晏应助是个哑巴采纳,获得10
21秒前
在水一方应助123采纳,获得10
27秒前
linfordlu发布了新的文献求助30
33秒前
33秒前
33秒前
科研通AI6应助执着亿先采纳,获得10
34秒前
江夏完成签到 ,获得积分10
36秒前
瓜兮兮CYY发布了新的文献求助10
36秒前
懒洋洋发布了新的文献求助10
38秒前
贪玩的万仇完成签到 ,获得积分10
39秒前
Akim应助瓜兮兮CYY采纳,获得10
42秒前
共享精神应助Soleil采纳,获得10
44秒前
谨慎采白完成签到 ,获得积分10
45秒前
LB完成签到,获得积分0
48秒前
Owen应助科研通管家采纳,获得10
49秒前
852应助科研通管家采纳,获得10
49秒前
852应助科研通管家采纳,获得10
49秒前
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
充电宝应助科研通管家采纳,获得10
50秒前
Criminology34应助科研通管家采纳,获得10
50秒前
SciGPT应助科研通管家采纳,获得10
50秒前
Criminology34应助科研通管家采纳,获得10
50秒前
科研通AI2S应助123采纳,获得10
55秒前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657742
求助须知:如何正确求助?哪些是违规求助? 4811989
关于积分的说明 15080182
捐赠科研通 4815962
什么是DOI,文献DOI怎么找? 2576976
邀请新用户注册赠送积分活动 1532019
关于科研通互助平台的介绍 1490512