GrapeLeafNet: A Dual-Track Feature Fusion Network With Inception-ResNet and Shuffle-Transformer for Accurate Grape Leaf Disease Identification

残差神经网络 计算机科学 鉴定(生物学) 变压器 对偶(语法数字) 人工智能 模式识别(心理学) 人工神经网络 工程类 电气工程 植物 生物 文学类 艺术 电压
作者
R. Karthik,R. Menaka,S. Ompirakash,Pragadeesh Murugan,M. Meenakashi,Sindhia Lingaswamy,Daehan Won
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 19612-19624 被引量:4
标识
DOI:10.1109/access.2024.3361044
摘要

Grapes are a widely cultivated crop in the horticultural industry, renowned for their unique flavor and nutritional benefits. However, this crop is highly susceptible to various diseases that can cause significant reductions in yield and quality, resulting in considerable financial losses. Therefore, it is imperative to identify these diseases to effectively manage their spread. Traditionally, the identification of grape leaf diseases has relied on scientific expertise and observational skills. However, with the advent of deep learning methods, it is now feasible to recognize disease patterns from images of infected leaves. In this research, we propose a novel dual-track feature fusion network titled 'GrapeLeafNet' for detecting grape leaf disease. It employs a dual-track feature fusion approach, combining Inception-ResNet blocks with CBAM for local feature extraction and Shuffle-Transformer for global feature extraction. The first track uses Inception-ResNet blocks to represent features at multiple scales and map significant features, and CBAM captures significant spatial and channel dependencies. The second track employs Shuffle-Transformer to extract long-term dependencies and complex global features in images. The extracted features are then fused using Coordinate attention, enabling the network to capture both local and global contextual information. Experimental results on the Grape leaf disease dataset from Plant Village demonstrate the effectiveness of the proposed network, achieving an accuracy of 99.56%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助nn采纳,获得30
1秒前
1秒前
1秒前
科研通AI6应助缓慢的初兰采纳,获得10
1秒前
笙默0329完成签到,获得积分20
1秒前
jerry完成签到,获得积分10
1秒前
1秒前
lruen7应助黑泡泡采纳,获得10
1秒前
想个名字完成签到,获得积分10
1秒前
sxx完成签到 ,获得积分10
1秒前
无花果应助憨憨采纳,获得10
2秒前
兴奋的发卡完成签到 ,获得积分10
2秒前
123发布了新的文献求助10
2秒前
orixero应助hsf采纳,获得10
2秒前
清爽琦完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
浮游应助qwe采纳,获得10
5秒前
慕青应助迟安歌采纳,获得10
5秒前
菜鸟发布了新的文献求助10
5秒前
美满山晴完成签到,获得积分20
5秒前
6秒前
6秒前
研友_VZG7GZ应助李李李采纳,获得10
6秒前
6秒前
瑾璟发布了新的文献求助10
6秒前
小小小小w完成签到,获得积分10
6秒前
l零碎完成签到,获得积分10
7秒前
7秒前
学术小牛发布了新的文献求助10
7秒前
Lollipop发布了新的文献求助10
7秒前
CrazyDiamond发布了新的文献求助10
7秒前
FlipFlops完成签到,获得积分10
7秒前
7秒前
细心的世倌完成签到,获得积分10
8秒前
nihaoya发布了新的文献求助30
8秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581856
求助须知:如何正确求助?哪些是违规求助? 4665999
关于积分的说明 14759982
捐赠科研通 4607956
什么是DOI,文献DOI怎么找? 2528430
邀请新用户注册赠送积分活动 1497713
关于科研通互助平台的介绍 1466585