Imputation for Single-cell RNA-seq Data with Non-negative Matrix Factorization and Transfer Learning

插补(统计学) 矩阵分解 计算机科学 聚类分析 数据挖掘 RNA序列 辍学(神经网络) 脚本语言 人工智能 转录组 缺少数据 机器学习 基因 特征向量 基因表达 生物 遗传学 物理 量子力学 操作系统
作者
Jiadi Zhu,Youlong Yang
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:21 (06)
标识
DOI:10.1142/s0219720023500294
摘要

Single-cell RNA sequencing (scRNA-seq) has been proven to be an effective technology for investigating the heterogeneity and transcriptome dynamics due to the single-cell resolution. However, one of the major problems for data obtained by scRNA-seq is excessive zeros in the count matrix, which hinders the downstream analysis enormously. Here, we present a method that integrates non-negative matrix factorization and transfer learning (NMFTL) to impute the scRNA-seq data. It borrows gene expression information from the additional dataset and adds graph-regularized terms to the decomposed matrices. These strategies not only maintain the intrinsic geometrical structure of the data itself but also further improve the accuracy of estimating the expression values by adding the transfer term in the model. The real data analysis result demonstrates that the proposed method outperforms the existing matrix-factorization-based imputation methods in recovering dropout entries, preserving gene-to-gene and cell-to-cell relationships, and in the downstream analysis, such as cell clustering analysis, the proposed method also has a good performance. For convenience, we have implemented the “NMFTL” method with R scripts, which could be available at https://github.com/FocusPaka/NMFTL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助肌肉干细胞采纳,获得10
刚刚
科研通AI2S应助滾滾采纳,获得10
1秒前
TT完成签到,获得积分10
1秒前
你终硕发布了新的文献求助30
1秒前
yyf完成签到,获得积分10
2秒前
Dguojiang完成签到,获得积分10
2秒前
Cicilia关注了科研通微信公众号
2秒前
丁峰发布了新的文献求助10
2秒前
2秒前
jie酱拌面应助昵称采纳,获得10
3秒前
mdydgo发布了新的文献求助10
3秒前
3秒前
cfer完成签到,获得积分10
4秒前
4秒前
RogerCHEN发布了新的文献求助100
4秒前
赤练仙子完成签到,获得积分10
5秒前
flypipidan完成签到,获得积分10
5秒前
lelele发布了新的文献求助10
6秒前
6秒前
momi完成签到 ,获得积分10
6秒前
遇上就这样吧应助CJY采纳,获得20
6秒前
leaolf应助CJY采纳,获得10
6秒前
dlindl完成签到,获得积分10
7秒前
不想卷科研完成签到,获得积分10
7秒前
独行业完成签到,获得积分10
7秒前
科研通AI6应助你终硕采纳,获得10
8秒前
8秒前
8秒前
千宝完成签到,获得积分10
8秒前
滾滾完成签到,获得积分10
9秒前
9秒前
10秒前
研友_8WdzPL发布了新的文献求助10
10秒前
10秒前
科研通AI6应助姜乐菱采纳,获得30
10秒前
快乐难敌完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572422
求助须知:如何正确求助?哪些是违规求助? 3993137
关于积分的说明 12361436
捐赠科研通 3666284
什么是DOI,文献DOI怎么找? 2020629
邀请新用户注册赠送积分活动 1054898
科研通“疑难数据库(出版商)”最低求助积分说明 942305