亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Imputation for Single-cell RNA-seq Data with Non-negative Matrix Factorization and Transfer Learning

插补(统计学) 矩阵分解 计算机科学 聚类分析 数据挖掘 RNA序列 辍学(神经网络) 脚本语言 人工智能 转录组 缺少数据 机器学习 基因 特征向量 基因表达 生物 遗传学 量子力学 操作系统 物理
作者
Jiadi Zhu,Youlong Yang
出处
期刊:Journal of Bioinformatics and Computational Biology [World Scientific]
卷期号:21 (06)
标识
DOI:10.1142/s0219720023500294
摘要

Single-cell RNA sequencing (scRNA-seq) has been proven to be an effective technology for investigating the heterogeneity and transcriptome dynamics due to the single-cell resolution. However, one of the major problems for data obtained by scRNA-seq is excessive zeros in the count matrix, which hinders the downstream analysis enormously. Here, we present a method that integrates non-negative matrix factorization and transfer learning (NMFTL) to impute the scRNA-seq data. It borrows gene expression information from the additional dataset and adds graph-regularized terms to the decomposed matrices. These strategies not only maintain the intrinsic geometrical structure of the data itself but also further improve the accuracy of estimating the expression values by adding the transfer term in the model. The real data analysis result demonstrates that the proposed method outperforms the existing matrix-factorization-based imputation methods in recovering dropout entries, preserving gene-to-gene and cell-to-cell relationships, and in the downstream analysis, such as cell clustering analysis, the proposed method also has a good performance. For convenience, we have implemented the “NMFTL” method with R scripts, which could be available at https://github.com/FocusPaka/NMFTL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pay发布了新的文献求助10
2秒前
Guts发布了新的文献求助10
3秒前
Accelerator完成签到,获得积分10
4秒前
伊力扎提完成签到,获得积分10
13秒前
16秒前
磊少完成签到,获得积分10
17秒前
思源应助Guts采纳,获得50
18秒前
归尘发布了新的文献求助10
22秒前
千早爱音完成签到 ,获得积分10
25秒前
XuNan完成签到,获得积分10
25秒前
Lucas应助材料生采纳,获得10
29秒前
34秒前
英姑应助科研通管家采纳,获得10
35秒前
35秒前
orixero应助pay采纳,获得10
38秒前
桐桐应助飞鞚采纳,获得10
38秒前
kento发布了新的文献求助10
38秒前
38秒前
SciGPT应助cxin采纳,获得10
43秒前
Ming应助TRNA采纳,获得10
44秒前
材料生发布了新的文献求助10
45秒前
56秒前
隐形的幻梅完成签到,获得积分10
59秒前
ll发布了新的文献求助10
1分钟前
1分钟前
丁一发布了新的文献求助10
1分钟前
1分钟前
1分钟前
丁一完成签到,获得积分10
1分钟前
飞鞚发布了新的文献求助10
1分钟前
TRISTE发布了新的文献求助20
1分钟前
huxuehong完成签到 ,获得积分10
1分钟前
阿泽完成签到,获得积分10
1分钟前
Ariel完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助TRISTE采纳,获得10
1分钟前
巴音布鲁克完成签到 ,获得积分10
1分钟前
宁过儿发布了新的文献求助20
1分钟前
jinyue完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754802
求助须知:如何正确求助?哪些是违规求助? 5489736
关于积分的说明 15380642
捐赠科研通 4893273
什么是DOI,文献DOI怎么找? 2631842
邀请新用户注册赠送积分活动 1579771
关于科研通互助平台的介绍 1535564