Adaptive particle swarm architecture search based on multi-level convolutions for functional brain network classification

计算机科学 粒子群优化 地图集(解剖学) 构造(python库) 建筑 人工智能 节点(物理) 数据挖掘 机器学习 艺术 古生物学 结构工程 工程类 视觉艺术 生物 程序设计语言
作者
Xingyu Wang,Junzhong Ji
标识
DOI:10.1109/bibm58861.2023.10385377
摘要

Recently, the functional brain network (FBN) classification methods based on deep neural networks (DNNs) have around a lot of scientific interest. However, these DNN architectures are manually designed by human experts through trial-and-error testing, which not only requires rich parameter tuning experience and large labor costs, but also a fixed manual architecture cannot consistently guarantee good performance across different data distributions and scenarios. To solve this problem, we propose an adaptive particle swarm architecture search method based on multi-level convolutions, which can automatically design suitable DNN architectures for various FBN classification tasks. Specifically, to effectively extract multi-level features at FBN, we construct three multi-level convolution units to form candidate architectures. These units can extract edge-level, node-level, and graph-level features respectively. The parameters of these units will be searched using the particle swarm-based NAS framework. Additionally, to alleviate the difficulty of searching in a vast search space, we propose a novel adaptive updating strategy. This strategy adaptively locks specific elements of the particle vector based on historical information and the search epochs, which can effectively search within a subset of the vast search space. We conduct systematic experiments on ABIDE I, ABIDE II, and ADHD-200 datasets with different atlases. The experimental results demonstrate that our method achieves competitive accuracies of 74.71%, 73.03%, and 74.39% on the CC200 atlas, and 71.42%, 73.91%, and 69.96% on the AAL atlas respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阔达忆秋完成签到 ,获得积分10
刚刚
Orange应助美丽废物采纳,获得10
1秒前
1秒前
风中的小蝴蝶完成签到,获得积分10
1秒前
毛毛完成签到 ,获得积分10
1秒前
2秒前
DELAY发布了新的文献求助10
2秒前
王涛发布了新的文献求助10
3秒前
4秒前
Wind应助Anna采纳,获得20
4秒前
白一航完成签到,获得积分10
4秒前
xiaogua完成签到,获得积分20
4秒前
杜贺满发布了新的文献求助10
4秒前
苏瑞完成签到,获得积分10
4秒前
4秒前
连衣裙发布了新的文献求助20
5秒前
AD应助冷艳的聪健采纳,获得10
5秒前
一脚跨越南北极完成签到,获得积分10
5秒前
科研通AI6应助夏沐沐采纳,获得10
6秒前
6秒前
6秒前
白一航发布了新的文献求助10
6秒前
db发布了新的文献求助10
6秒前
6秒前
7秒前
Miya完成签到 ,获得积分10
7秒前
galaxy完成签到,获得积分10
7秒前
7秒前
好好休息完成签到 ,获得积分10
7秒前
7秒前
小二郎应助潘潘采纳,获得10
7秒前
SciGPT应助浮世一梦采纳,获得10
8秒前
yao完成签到,获得积分10
8秒前
冷傲孱发布了新的文献求助10
8秒前
wzh完成签到,获得积分10
9秒前
天天快乐应助杜贺满采纳,获得10
9秒前
汉堡包应助怕黑千易采纳,获得10
9秒前
AD应助埃及下雨了采纳,获得10
9秒前
共享精神应助牛肉包子采纳,获得10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587472
求助须知:如何正确求助?哪些是违规求助? 4670562
关于积分的说明 14783436
捐赠科研通 4622867
什么是DOI,文献DOI怎么找? 2531286
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468080