Adaptive particle swarm architecture search based on multi-level convolutions for functional brain network classification

计算机科学 粒子群优化 地图集(解剖学) 构造(python库) 建筑 人工智能 节点(物理) 数据挖掘 机器学习 艺术 古生物学 结构工程 工程类 视觉艺术 生物 程序设计语言
作者
Xingyu Wang,Junzhong Ji
标识
DOI:10.1109/bibm58861.2023.10385377
摘要

Recently, the functional brain network (FBN) classification methods based on deep neural networks (DNNs) have around a lot of scientific interest. However, these DNN architectures are manually designed by human experts through trial-and-error testing, which not only requires rich parameter tuning experience and large labor costs, but also a fixed manual architecture cannot consistently guarantee good performance across different data distributions and scenarios. To solve this problem, we propose an adaptive particle swarm architecture search method based on multi-level convolutions, which can automatically design suitable DNN architectures for various FBN classification tasks. Specifically, to effectively extract multi-level features at FBN, we construct three multi-level convolution units to form candidate architectures. These units can extract edge-level, node-level, and graph-level features respectively. The parameters of these units will be searched using the particle swarm-based NAS framework. Additionally, to alleviate the difficulty of searching in a vast search space, we propose a novel adaptive updating strategy. This strategy adaptively locks specific elements of the particle vector based on historical information and the search epochs, which can effectively search within a subset of the vast search space. We conduct systematic experiments on ABIDE I, ABIDE II, and ADHD-200 datasets with different atlases. The experimental results demonstrate that our method achieves competitive accuracies of 74.71%, 73.03%, and 74.39% on the CC200 atlas, and 71.42%, 73.91%, and 69.96% on the AAL atlas respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旧城发布了新的文献求助10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
pcr163应助科研通管家采纳,获得80
2秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得20
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
iNk应助是阮软不是懒懒采纳,获得10
3秒前
红绿蓝完成签到 ,获得积分10
3秒前
abc123完成签到,获得积分10
4秒前
hhhyyyy发布了新的文献求助30
5秒前
传奇3应助千瓦时醒醒采纳,获得10
6秒前
是阮软不是懒懒完成签到,获得积分10
9秒前
10秒前
陈锦鲤完成签到 ,获得积分10
10秒前
10秒前
d.zhang完成签到,获得积分10
10秒前
形而发布了新的文献求助10
11秒前
淡定南琴完成签到,获得积分10
12秒前
科研小白发布了新的文献求助10
14秒前
14秒前
suzy发布了新的文献求助10
15秒前
彪壮的若男完成签到 ,获得积分10
15秒前
顾矜应助lll采纳,获得10
16秒前
17秒前
17秒前
pp若若gg完成签到,获得积分10
17秒前
Hello应助zou采纳,获得10
18秒前
我是萨比完成签到,获得积分10
18秒前
不会下文献完成签到,获得积分10
19秒前
栗子发布了新的文献求助30
19秒前
风轻萤发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012