Box2Pseudo: A Semi-Supervised Learning Framework for Pulmonary Nodule Segmentation with Box-Prompt Pseudo Supervision

计算机科学 分割 结核(地质) 人工智能 图像分割 地质学 古生物学
作者
Siqi Zhang,Jingkun Yue,Chengdi Wang,Xiaohong Liu,Guangyu Wang
标识
DOI:10.1109/bibm58861.2023.10385901
摘要

Accurate pulmonary nodule segmentation is critical for early diagnosis of lung cancer. Yet, the high cost and labor-intensive nature of pixel-wise manual annotations remains challenging. In real-world clinical practice, weakly annotated labels like bounding boxes are more affordable and they always coexist with fully pixel-level annotated labels. However, the simultaneous use of fully and weakly annotated data for pulmonary nodule segmentation presents complexities. In this paper, we propose Box2Pseudo, a principled semi-supervised framework for pulmonary segmentation that only uses a small set of fully labeled data (having pixel-level and box labels) and a large set of weakly labeled data (having box labels only). Specifically, our Box2Pseudo consists of three networks, including the box-prompt network (BPN), the pseudo-refine network (PRN) and the main network (MAN). To make full use of localization priors provided by bounding boxes, we propose background-filter layer (BFL), which can be combined with BPN and PRN to generate high-quality pseudo labels. By using the gated feature map generated by BFL, the predicted pseudo labels can enhance the attention of target features within each bounding box. Furthermore, we propose box-prompt pseudo supervision to simultaneously train BPN, PRN and MAN, which enforces the consistency between the prediction of MAN and PRN on the weakly labeled data, thus ensuring the MAN's stable optimization and maximizing the utility of the weak annotations. Comprehensive evaluations on both open-source (LIDC-IDRI) and in-house (HX-NODULE) datasets demonstrate that Box2Pseudo outperforms state-of-the-art methods and achieves comparable performance to fully-supervised approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情平凡发布了新的文献求助10
刚刚
Ava应助怕黑凝海采纳,获得10
刚刚
黄毅发布了新的文献求助10
刚刚
刚刚
刚刚
张张磊发布了新的文献求助10
1秒前
涵de暴躁小地雷完成签到,获得积分10
1秒前
哦豁完成签到,获得积分10
2秒前
tangpc完成签到,获得积分10
3秒前
19完成签到,获得积分0
4秒前
搜集达人应助尊敬的惠采纳,获得10
5秒前
踏实口红完成签到,获得积分10
5秒前
我是老大应助自觉凝荷采纳,获得10
6秒前
眼睛大的问儿完成签到,获得积分10
6秒前
漂流发布了新的文献求助10
7秒前
9秒前
10秒前
11秒前
11秒前
怕黑凝海完成签到,获得积分20
11秒前
992575完成签到,获得积分10
12秒前
直率书芹完成签到,获得积分10
13秒前
14秒前
英俊小美发布了新的文献求助10
14秒前
Huuu完成签到,获得积分10
14秒前
笠柚完成签到,获得积分10
15秒前
tdtk发布了新的文献求助10
15秒前
Lucky完成签到,获得积分10
15秒前
怕黑凝海发布了新的文献求助10
15秒前
ddz发布了新的文献求助10
16秒前
英姑应助孙璧宬采纳,获得10
17秒前
子寒完成签到,获得积分10
19秒前
Cat应助聪明的tracy采纳,获得20
19秒前
岩鹰完成签到,获得积分10
19秒前
老实的石头完成签到,获得积分10
20秒前
22秒前
科研通AI5应助聪慧的斑马采纳,获得10
22秒前
慕青应助干净冰露采纳,获得100
22秒前
Bob完成签到,获得积分10
23秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774680
求助须知:如何正确求助?哪些是违规求助? 3320470
关于积分的说明 10200348
捐赠科研通 3035183
什么是DOI,文献DOI怎么找? 1665375
邀请新用户注册赠送积分活动 796901
科研通“疑难数据库(出版商)”最低求助积分说明 757635