Open-set recognition with long-tail sonar images

声纳 计算机科学 人工智能 集合(抽象数据类型) 计算机视觉 模式识别(心理学) 程序设计语言
作者
Wenpei Jiao,Jianlei Zhang,Chunyan Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123495-123495
标识
DOI:10.1016/j.eswa.2024.123495
摘要

Current sonar image recognition methods excel in closed-set and balanced scenarios, but real underwater data often follow an open-set and long-tailed distribution, leading to misclassifications, especially among tail classes. Although open-set long-tail recognition (OLTR) tasks have received attention in natural images in recent years, there has been a lack of systematic research in sonar images. To address this gap, we present the first comprehensive study and analysis of open-set long-tail recognition in sonar images (Sonar-OLTR). In this paper, we establish a Sonar-OLTR benchmark by introducing the Nankai Sonar Image Dataset (NKSID), a new collection of 2617 real-world forward-looking sonar images. We investigate the challenges posed by long-tail distributions in existing open-set recognition (OSR) evaluation metrics for sonar images and propose two improved evaluation metrics. Using this benchmark, we conduct a thorough examination of state-of-the-art OSR, long-tail recognition, OLTR, and out-of-distribution detection algorithms. Additionally, we propose a straightforward yet effective integrated Sonar-OLTR approach as a new baseline. This method introduces a Push the right Logit Up and the wrong logit Down (PLUD) loss to increase feature space margins between known and unknown classes, as well as head and tail classes within known classes. Extensive experimental evaluation based on the benchmark demonstrates the performance and speed advantages of PLUD, providing insights for future Sonar-OLTR research. The code and dataset are publicly available at https://github.com/Jorwnpay/Sonar-OLTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yu完成签到,获得积分10
1秒前
一呆发布了新的文献求助10
1秒前
samfengkun发布了新的文献求助10
2秒前
wanci应助dm采纳,获得10
2秒前
小王大王完成签到,获得积分20
3秒前
科研通AI2S应助热情的书南采纳,获得10
3秒前
科研通AI2S应助azure采纳,获得10
3秒前
李健的小迷弟应助肉肉儿采纳,获得10
4秒前
5秒前
5秒前
7秒前
Gzero1完成签到,获得积分10
8秒前
面圈发布了新的文献求助10
8秒前
Ava应助毛子涵采纳,获得10
9秒前
SXYYXS发布了新的文献求助10
11秒前
杳杳呀发布了新的文献求助10
12秒前
远方发布了新的文献求助10
13秒前
面圈完成签到,获得积分20
14秒前
琦琦完成签到 ,获得积分10
16秒前
19秒前
20秒前
21秒前
远方完成签到,获得积分10
21秒前
修管子完成签到 ,获得积分10
21秒前
可爱的函函应助Lin采纳,获得30
22秒前
赘婿应助SXYYXS采纳,获得10
22秒前
肉肉儿完成签到,获得积分20
23秒前
一呆完成签到,获得积分10
23秒前
ooseabiscuit发布了新的文献求助30
25秒前
pluto应助jjb123666采纳,获得10
26秒前
zzz完成签到 ,获得积分10
26秒前
26秒前
鲤鱼懿轩发布了新的文献求助10
27秒前
Ava应助玉衡采纳,获得10
27秒前
Lin完成签到,获得积分10
28秒前
共享精神应助大冰采纳,获得10
28秒前
29秒前
Seoyeong发布了新的文献求助10
30秒前
汉堡包应助高晓澍采纳,获得10
30秒前
桐桐应助阿季采纳,获得10
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233196
求助须知:如何正确求助?哪些是违规求助? 2879802
关于积分的说明 8212752
捐赠科研通 2547256
什么是DOI,文献DOI怎么找? 1376718
科研通“疑难数据库(出版商)”最低求助积分说明 647682
邀请新用户注册赠送积分活动 623086