A Comprehensive Review of Deep Learning-Based PCB Defect Detection

计算机科学 人工智能 机器学习 深度学习 印刷电路板 交叉口(航空) 生成语法 算法 工程类 航空航天工程 操作系统
作者
Xing Chen,Yonglei Wu,Xingyou He,Wuyi Ming
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 139017-139038 被引量:13
标识
DOI:10.1109/access.2023.3339561
摘要

A printed circuit board (PCB) functions as a substrate essential for interconnecting and securing electronic components. Its widespread integration is evident in modern electronic devices, spanning computers, cell phones, televisions, digital cameras, and diverse apparatus. Ensuring product quality mandates meticulous defect inspection, a task exacerbated by the heightened precision of contemporary circuit boards, intensifying the challenge of defect detection. Conventional algorithms, hampered by inefficiency and limited accuracy, fall short of usage benchmarks. In contrast, PCB defect detection algorithms rooted in deep learning hold promise for achieving heightened accuracy and efficiency, bolstered by their adeptness at discerning novel defect types. This review presents a comprehensive analysis of machine vision-based PCB defect detection algorithms, traversing the realms of machine learning and deep learning. It commences by contextualizing and elucidating the significance of such algorithms, followed by an extensive exploration of their evolution within the machine vision framework, encompassing classification, comparison, and analysis of algorithmic principles, strengths, and weaknesses. Moreover, the introduction of widely used PCB defect detection datasets and assessment indices enhances the evaluation of algorithmic performance. Currently, the detection accuracy can exceed 95% at an Intersection over Union (IoU) of 0.5. Lastly, potential future research directions are identified to address the existing issues in the current algorithm. These directions include utilizing Transformers as a foundational framework for creating new algorithms and employing techniques like Generative Adversarial Networks (GANs) and reinforcement learning to enhance PCB defect detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
卿欣完成签到 ,获得积分10
3秒前
杜宇完成签到 ,获得积分10
4秒前
拾意发布了新的文献求助30
4秒前
大模型应助无限的元珊采纳,获得10
5秒前
77完成签到 ,获得积分10
5秒前
donfern完成签到,获得积分10
6秒前
6秒前
无奈枕头发布了新的文献求助10
6秒前
谢文强完成签到,获得积分10
9秒前
充电宝应助Rubisco采纳,获得10
10秒前
10秒前
礼貌问好发布了新的文献求助10
11秒前
D1504009654完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
16秒前
欢迎scid完成签到,获得积分10
17秒前
17秒前
77发布了新的文献求助30
19秒前
20秒前
笑笑给笑笑的求助进行了留言
20秒前
李健的粉丝团团长应助yxl采纳,获得10
22秒前
完美世界应助wrufhg采纳,获得10
22秒前
Dontcare发布了新的文献求助10
25秒前
科目三应助无奈枕头采纳,获得10
26秒前
庞伟泽发布了新的文献求助10
27秒前
xrl完成签到,获得积分10
29秒前
CipherSage应助Ars采纳,获得10
30秒前
wanci应助zhouleiwang采纳,获得10
31秒前
33秒前
feizao完成签到,获得积分10
36秒前
踏山河完成签到,获得积分10
37秒前
MP完成签到,获得积分0
37秒前
Rubisco发布了新的文献求助10
38秒前
38秒前
screct完成签到,获得积分10
39秒前
wangyaya应助收敛采纳,获得10
40秒前
大模型应助slin_sjtu采纳,获得10
41秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329716
求助须知:如何正确求助?哪些是违规求助? 2959333
关于积分的说明 8595189
捐赠科研通 2637764
什么是DOI,文献DOI怎么找? 1443774
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656280