天冬酰胺
中国仓鼠卵巢细胞
细胞培养
计算生物学
基因组
生物
细胞生物学
化学
生物化学
酶
遗传学
基因
作者
Kuin Tian Pang,Yi Fan Hong,Fumi Shozui,Shunpei Furomitsu,Matthew Myint,Ying Swan Ho,Yaron Silberberg,Ian Walsh,Meiyappan Lakshmanan
标识
DOI:10.1002/biot.202400072
摘要
Amino acids, including asparagine, aspartate, glutamine, and glutamate, play important roles in purine and pyrimidine biosynthesis as well as serve as anaplerotic sources fueling the tricarboxylic acid (TCA) cycle for mitochondrial energy generation. Despite extensive studies on glutamine and glutamate in CHO cell cultures, the roles of asparagine and aspartate, especially in feed media, remain underexplored. In this study, we utilized a CHO genome scale model to first deeply characterize the intracellular metabolic states of CHO cells cultured in different combinations of basal and feed media to understand the traits of asparagine/aspartate-dependent and glutamate-dependent feeds. Subsequently, we identified the critical role of asparagine and aspartate in the feed media as anaplerotic sources and conducted in silico simulations to ascertain their optimal ratios to improve cell culture performance. Finally, based on the model simulations, we reformulated the feed media by tailoring the concentrations of asparagine and aspartate. Our experimental data reveal a CHO cell preference for asparagine compared with aspartate, and thus maintaining an optimal ratio of these amino acids is a key factor for achieving optimal CHO cell culture performance in biopharmaceutical production.
科研通智能强力驱动
Strongly Powered by AbleSci AI