Chromatin enables precise and scalable gene regulation with factors of limited specificity

染色质 嘉雅宠物 生物 计算生物学 转录因子 基因 基因表达调控 抑制因子 遗传学 染色质重塑 基因表达
作者
Melinda Liu Perkins,Justin Crocker,Gašper Tkačik
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (1)
标识
DOI:10.1073/pnas.2411887121
摘要

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs). Under what conditions and by how much can chromatin reduce regulatory errors on a global scale? We use a theoretical approach to compare two scenarios for gene regulation: one that relies on TF binding to free DNA alone and one that uses a combination of TFs and chromatin-regulating PFs to achieve desired gene expression patterns. We find, first, that chromatin effectively silences groups of genes that should be simultaneously OFF, thereby allowing more accurate graded control of expression for the remaining ON genes. Second, chromatin buffers the deleterious consequences of nontarget binding as the number of OFF genes grows, permitting a substantial expansion in regulatory complexity. Third, chromatin-based regulation productively co-opts nontarget TF binding for ON genes in order to establish a “leaky” baseline expression level, which targeted activator or repressor binding subsequently up- or down-modulates. Thus, on a global scale, using chromatin simultaneously alleviates pressure for high specificity of regulatory interactions and enables an increase in genome size with minimal impact on global expression error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lililili发布了新的文献求助10
1秒前
大模型应助欢喜大地采纳,获得10
1秒前
1秒前
科研通AI2S应助旷野采纳,获得10
2秒前
乐乐应助落花生采纳,获得10
3秒前
华彬心发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
赘婿应助沉静的煎蛋采纳,获得10
4秒前
weed6完成签到,获得积分10
4秒前
李健应助快乐访蕊采纳,获得10
5秒前
包容友儿发布了新的文献求助10
5秒前
鱿鱼完成签到,获得积分10
5秒前
现代的妍完成签到,获得积分10
5秒前
6秒前
孙亚博完成签到,获得积分10
6秒前
阿良完成签到,获得积分10
6秒前
唐泽雪穗应助米忧伤基罗采纳,获得10
8秒前
田様应助米忧伤基罗采纳,获得10
8秒前
孙亚博发布了新的文献求助10
11秒前
yx完成签到,获得积分10
11秒前
Carina7684发布了新的文献求助30
13秒前
桐桐应助欣嫩谷采纳,获得10
13秒前
yyyy完成签到,获得积分10
13秒前
打打应助笨笨的鬼神采纳,获得10
15秒前
一颗小洋葱完成签到 ,获得积分10
17秒前
17秒前
doskkk关注了科研通微信公众号
18秒前
君君完成签到,获得积分10
19秒前
19秒前
叶潭完成签到,获得积分10
20秒前
CHENXIN532完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助150
20秒前
大个应助胡图图采纳,获得10
21秒前
21秒前
打打应助hd采纳,获得10
22秒前
22秒前
快乐访蕊发布了新的文献求助10
23秒前
23秒前
旷野发布了新的文献求助10
23秒前
zhut发布了新的文献求助10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142528
求助须知:如何正确求助?哪些是违规求助? 4340819
关于积分的说明 13518240
捐赠科研通 4180740
什么是DOI,文献DOI怎么找? 2292579
邀请新用户注册赠送积分活动 1293245
关于科研通互助平台的介绍 1235752