Enhancing Radiographic Diagnosis: CycleGAN-Based Methods for Reducing Cast Shadow Artifacts in Wrist Radiographs

射线照相术 医学诊断 医学 特征(语言学) 手腕 放射科 计算机科学 影子(心理学) 人工智能 心理学 心理治疗师 哲学 语言学
作者
Stanley A. Norris,Daniel Carrion,Michael Ditchfield,Manuel Gubser,Jarrel Seah,Mohamed Khaldoun Badawy
标识
DOI:10.1007/s10278-024-01385-3
摘要

We extend existing techniques by using generative adversarial network (GAN) models to reduce the appearance of cast shadows in radiographs across various age groups. We retrospectively collected 11,500 adult and paediatric wrist radiographs, evenly divided between those with and without casts. The test subset consisted of 750 radiographs with cast and 750 without cast. We extended the results from a previous study that employed CycleGAN by enhancing the model using a perceptual loss function and a self-attention layer. The CycleGAN model which incorporates a self-attention layer and perceptual loss function delivered a similar quantitative performance as the original model. This model was applied to images from 20 cases where the original reports recommended CT scanning or repeat radiographs without the cast, which were then evaluated by radiologists for qualitative assessment. The results demonstrated that the generated images could improve radiologists' diagnostic confidence, in some cases leading to more decisive reports. Where available, the reports from follow-up imaging were compared with those produced by radiologists reading AI-generated images. Every report, except two, provided identical diagnoses as those associated with follow-up imaging. The ability of radiologists to perform robust reporting with downsampled AI-enhanced images is clinically meaningful and warrants further investigation. Additionally, radiologists were unable to distinguish AI-enhanced from unenhanced images. These findings suggest the cast suppression technique could be integrated as a tool to augment clinical workflows, with the potential benefits of reducing patient doses, improving operational efficiencies, reducing delays in diagnoses, and reducing the number of patient visits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PSA发布了新的文献求助10
刚刚
白色的风车完成签到,获得积分10
刚刚
5430发布了新的文献求助10
刚刚
无心的枫完成签到,获得积分10
1秒前
kc135完成签到,获得积分10
1秒前
st89225完成签到,获得积分10
1秒前
绿萝完成签到,获得积分0
3秒前
做实验太菜完成签到,获得积分10
5秒前
6秒前
6666669完成签到,获得积分10
6秒前
5430完成签到,获得积分10
7秒前
BOSS徐完成签到,获得积分10
7秒前
7秒前
平淡寻菡完成签到,获得积分10
7秒前
赫连人杰发布了新的文献求助10
7秒前
wanci应助不可靠月亮采纳,获得10
8秒前
科研通AI5应助dablack采纳,获得10
10秒前
10秒前
11秒前
qinghe完成签到 ,获得积分10
11秒前
XuWh发布了新的文献求助10
12秒前
安静幻桃完成签到,获得积分10
12秒前
jacksin完成签到,获得积分10
13秒前
13秒前
wzc123xn完成签到,获得积分20
14秒前
嘎嘎嘎完成签到,获得积分10
14秒前
5433发布了新的文献求助10
14秒前
_Forelsket_完成签到,获得积分10
15秒前
于大夫完成签到 ,获得积分10
15秒前
yull完成签到,获得积分10
16秒前
16秒前
esther完成签到,获得积分10
17秒前
XiaoDai完成签到,获得积分10
17秒前
biubiuu完成签到,获得积分10
17秒前
rubywoojennie发布了新的文献求助10
17秒前
一修完成签到,获得积分10
18秒前
19秒前
RC_Wang应助Singularity采纳,获得10
20秒前
20秒前
迅速的红牛完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510889
求助须知:如何正确求助?哪些是违规求助? 3093660
关于积分的说明 9218106
捐赠科研通 2788030
什么是DOI,文献DOI怎么找? 1529995
邀请新用户注册赠送积分活动 710681
科研通“疑难数据库(出版商)”最低求助积分说明 706311