Enhancing Radiographic Diagnosis: CycleGAN-Based Methods for Reducing Cast Shadow Artifacts in Wrist Radiographs

射线照相术 医学诊断 医学 特征(语言学) 手腕 放射科 计算机科学 影子(心理学) 人工智能 心理学 语言学 哲学 心理治疗师
作者
Stanley A. Norris,Daniel Carrion,Michael Ditchfield,Manuel Gubser,Jarrel Seah,Mohamed Khaldoun Badawy
标识
DOI:10.1007/s10278-024-01385-3
摘要

We extend existing techniques by using generative adversarial network (GAN) models to reduce the appearance of cast shadows in radiographs across various age groups. We retrospectively collected 11,500 adult and paediatric wrist radiographs, evenly divided between those with and without casts. The test subset consisted of 750 radiographs with cast and 750 without cast. We extended the results from a previous study that employed CycleGAN by enhancing the model using a perceptual loss function and a self-attention layer. The CycleGAN model which incorporates a self-attention layer and perceptual loss function delivered a similar quantitative performance as the original model. This model was applied to images from 20 cases where the original reports recommended CT scanning or repeat radiographs without the cast, which were then evaluated by radiologists for qualitative assessment. The results demonstrated that the generated images could improve radiologists' diagnostic confidence, in some cases leading to more decisive reports. Where available, the reports from follow-up imaging were compared with those produced by radiologists reading AI-generated images. Every report, except two, provided identical diagnoses as those associated with follow-up imaging. The ability of radiologists to perform robust reporting with downsampled AI-enhanced images is clinically meaningful and warrants further investigation. Additionally, radiologists were unable to distinguish AI-enhanced from unenhanced images. These findings suggest the cast suppression technique could be integrated as a tool to augment clinical workflows, with the potential benefits of reducing patient doses, improving operational efficiencies, reducing delays in diagnoses, and reducing the number of patient visits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安静的幻儿完成签到,获得积分10
刚刚
粥喝不喝发布了新的文献求助10
2秒前
jackeyYuu完成签到,获得积分10
2秒前
2秒前
艺术家完成签到,获得积分10
2秒前
wang发布了新的文献求助10
2秒前
念与惜发布了新的文献求助10
3秒前
张子贤完成签到,获得积分10
4秒前
4秒前
斯文钢笔发布了新的文献求助10
5秒前
慕青应助白罗采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
谦让R应助ying采纳,获得10
6秒前
神奇小鹿完成签到 ,获得积分10
7秒前
不知完成签到,获得积分10
7秒前
aaaaazhou完成签到,获得积分10
7秒前
乐乐子子应助张子贤采纳,获得10
8秒前
PHfei完成签到,获得积分10
8秒前
Rovy发布了新的文献求助30
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
1111完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
1111发布了新的文献求助30
12秒前
蓝天发布了新的文献求助10
12秒前
13秒前
14秒前
Ttt发布了新的文献求助10
15秒前
李敏发布了新的文献求助10
15秒前
16秒前
16秒前
18秒前
小蘑菇应助玖伍采纳,获得10
18秒前
20秒前
瑾蘆完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766937
求助须知:如何正确求助?哪些是违规求助? 5567438
关于积分的说明 15414037
捐赠科研通 4900993
什么是DOI,文献DOI怎么找? 2636801
邀请新用户注册赠送积分活动 1584968
关于科研通互助平台的介绍 1540195