Facile Laser Cutting Process for Nanocellulose-Paper-Based Microfluidic Microchannel Fabrication

微通道 材料科学 微流控 制作 纳米技术 激光器 纳米纤维素 涂层 纤维素 光学 工程类 医学 替代医学 物理 病理 化学工程
作者
Miao Lü,Wenwen Yuan,Ruiqi Yong,Hang Yuan,Zhenzhen Jiang,Yucheng Gong,Fuzhou Niu,Pengfei Song
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jsen.2024.3522403
摘要

Nanofibrillated cellulose paper (nanopaper) has drawn increasing attention as a potential material for various areas, due to its extremely smooth surface, excellent optical transparency and sequent nanofiber matrix. To extend nanopaper application as the analytical platform, nanopaper-based microfluidics has quickly advanced recently. However, the current method of patterning microchannels on nanopaper which is the basic for establishing microfluidic (i.e., 3D printing and spray coating), still has some limitations, including low precision and long preparation time. So, in this study, we utilized laser cutting to fabricate microchannel patterns on nanopaper by burning the surface of nanopaper. Through systematic parameters (laser cutting speed and power) optimization, we identified the optimal laser cutting conditions, enhancing both efficiency and accuracy. The minimum depth and width of the microchannels were reduced to 15 μm and 58 μm, respectively. The entire fabrication process, including drying, was completed in less than 35 minutes. Compared to the existing methods, this method has smaller microchannels size, time saving and no need for additional molds or equipment those advantages which contribute its novelty and accuracy. By arranging different shapes of lines, microchannels for various sensing were developed. As a proof-of-concept, we developed two functional nanopaper-based analyzer devices (NanoPADs). With a detection limit of 2.2 mM for glucose and 281 fM for Rhodamine B (RhB), both demonstrating excellent performance and low detection limits. The results indicate that our laser-cutting nanopaper microchannels may serve as a platform for developing high-performance analytical devices which may spark the development of nanopaper in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
inzaghi完成签到,获得积分10
刚刚
深情安青应助hhhhhhxxxxxx采纳,获得10
刚刚
IrisRainbow发布了新的文献求助30
刚刚
1秒前
rous发布了新的文献求助10
1秒前
pency发布了新的文献求助10
2秒前
金平卢仙发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助自觉的飞鸟采纳,获得30
2秒前
3秒前
所所应助wangyup采纳,获得10
3秒前
小蘑菇应助123采纳,获得10
4秒前
4秒前
4秒前
小鸣完成签到 ,获得积分10
4秒前
4秒前
6秒前
充电宝应助lll采纳,获得10
6秒前
冰火完成签到,获得积分10
6秒前
007发布了新的文献求助10
7秒前
宇航关注了科研通微信公众号
7秒前
内向的大白完成签到,获得积分10
8秒前
9秒前
科研通AI5应助顶顶小明采纳,获得10
9秒前
9秒前
隐形曼青应助Narsic采纳,获得10
9秒前
小王同学发布了新的文献求助10
10秒前
mini完成签到 ,获得积分10
10秒前
尛森发布了新的文献求助10
10秒前
J.发布了新的文献求助10
11秒前
彭于晏应助微笑的冰烟采纳,获得10
11秒前
12秒前
凌宇完成签到 ,获得积分10
12秒前
来日可追应助陈喵喵采纳,获得10
12秒前
研友_8oBpRZ完成签到,获得积分10
12秒前
12秒前
合适板栗完成签到,获得积分10
12秒前
13秒前
zhangzhisenn发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 530
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3579406
求助须知:如何正确求助?哪些是违规求助? 3149344
关于积分的说明 9476879
捐赠科研通 2850607
什么是DOI,文献DOI怎么找? 1567271
邀请新用户注册赠送积分活动 734033
科研通“疑难数据库(出版商)”最低求助积分说明 720346