In0.5Ga0.5N Nanowires with Surface Adsorbed Nonmetallic Atoms for Photoelectric Devices: A First-Principles Investigation

光电效应 纳米线 吸附 材料科学 曲面(拓扑) 光电子学 纳米技术 物理化学 化学 几何学 数学
作者
Zhihao Cao,Lei Liu,Zhidong Wang,Jian Tian,Xingyue Zhangyang,Hongchang Cheng,Xin Guo
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (22): 26287-26296
标识
DOI:10.1021/acsanm.4c05954
摘要

Based on first-principles, we calculate the effect of nonmetallic atoms (H, C, N, and O) adsorbing on the surface of In0.5Ga0.5N nanowires on their photoelectric properties. We first analyze the influence of In atom arrangements and nonmetallic atom adsorption positions in nanowires on system stability. When all In atoms are in the outermost layer of nanowires, In0.5Ga0.5N nanowires are the most stable. H, C, and O atoms are most stable when adsorbed at the TGa position, while the N atom is more inclined to adsorb at the C position. On this basis, we conduct research on the effect of nonmetallic atomic adsorption on In0.5Ga0.5N nanowires. The results show that the work function of nanowires can be reduced effectively by the four kinds of atomic adsorption. N atom adsorption has the most obvious effect on the bandgap. This is mainly due to the fact that N atom adsorption creates a new impurity level near the Fermi level. The Fermi level will cross the conduction band to turn the In0.5Ga0.5N nanowire into an n-type semiconductor. The improvement of optical properties by nonmetallic atomic adsorption is relatively insignificant. However, due to the high absorption coefficient and low reflectivity over a wide wavelength range, as well as the low difficulty of electron escape, nanowires that adsorb atoms have enormous potential for applications in solar cells and vacuum optoelectronic devices that require a wide spectral response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sherry发布了新的文献求助10
刚刚
Yoke完成签到,获得积分10
刚刚
刚刚
我爱学习完成签到,获得积分10
1秒前
1秒前
科研小白完成签到,获得积分10
2秒前
去玩儿发布了新的文献求助10
2秒前
2秒前
小Y发布了新的文献求助10
3秒前
顺利的科研能手完成签到 ,获得积分10
3秒前
3秒前
ttracc完成签到 ,获得积分10
4秒前
4秒前
4秒前
我是老大应助疯狂的月亮采纳,获得10
5秒前
zhang发布了新的文献求助10
5秒前
小凉发布了新的文献求助10
6秒前
OHDJSZMS完成签到,获得积分10
6秒前
6秒前
7秒前
Stalin完成签到,获得积分10
7秒前
hiimcwn发布了新的文献求助10
7秒前
7秒前
8秒前
欣喜大地发布了新的文献求助10
8秒前
阳光不弱发布了新的文献求助10
9秒前
yujm2919完成签到,获得积分10
10秒前
10秒前
10秒前
super chan完成签到,获得积分20
10秒前
11秒前
11秒前
whynot发布了新的文献求助10
12秒前
12秒前
12秒前
小凉完成签到,获得积分10
12秒前
12秒前
共享精神应助碳烤小肥肠采纳,获得10
13秒前
13秒前
大个应助阳光不弱采纳,获得30
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745123
求助须知:如何正确求助?哪些是违规求助? 3288044
关于积分的说明 10057300
捐赠科研通 3004289
什么是DOI,文献DOI怎么找? 1649632
邀请新用户注册赠送积分活动 785436
科研通“疑难数据库(出版商)”最低求助积分说明 751077