Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models

流量(计算机网络) 微观交通流模型 弦(物理) 理论(学习稳定性) 流量(数学) 计算机科学 统计物理学 应用数学 数学 机械 交通生成模型 物理 理论物理学 计算机安全 计算机网络 机器学习
作者
Marouane Bouadi,Bin Jia,Rui Jiang,Xingang Li,Ziyou Gao
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:165: 96-122 被引量:25
标识
DOI:10.1016/j.trb.2022.09.007
摘要

The emergence dynamics of traffic instability has always attracted particular attention. For several decades, researchers have studied the stability of traffic flow using deterministic traffic models, with less emphasis on the presence of stochastic factors. However, recent empirical and theoretical findings have demonstrated that the stochastic factors tend to destabilize traffic flow and stimulate the concave growth pattern of traffic oscillations. In this paper, we derive a string stability condition of a general stochastic continuous car-following model by the mean of the generalized Lyapunov equation. We have found, indeed, that the presence of stochasticity destabilizes the traffic flow. The impact of stochasticity depends on both the sensitivity to the gap and the sensitivity to the velocity difference. Numerical simulations of three typical car-following models have been carried out to validate our theoretical analysis. Finally, we have calibrated and validated the stochastic car-following models against empirical data. It is found that the stochastic car-following models reproduce the observed traffic instability and capture the concave growth pattern of traffic oscillations. Our results further highlight theoretically and numerically that the stochastic factors have a significant impact on traffic dynamics. • String stability condition of a general stochastic car-following model. • The presence of stochastic factors contributes to destabilizing traffic flow. • The presence of stochastic factors reproduces the observed traffic oscillations and the concave growth pattern of traffic oscillations. • The consideration of stochastic factors improves the prediction capability of traffic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Jasper应助刘芸芸采纳,获得10
3秒前
m彬m彬完成签到 ,获得积分10
3秒前
4秒前
自信鑫鹏完成签到,获得积分10
4秒前
HYH完成签到,获得积分10
4秒前
Harish完成签到,获得积分10
5秒前
研友_851KE8发布了新的文献求助10
5秒前
5秒前
一段乐多发布了新的文献求助10
5秒前
5秒前
华仔完成签到,获得积分10
5秒前
刘百慧完成签到,获得积分10
5秒前
5秒前
Wyan发布了新的文献求助80
7秒前
成就映秋发布了新的文献求助30
7秒前
科研通AI2S应助坤坤采纳,获得10
7秒前
整齐芷文完成签到,获得积分10
8秒前
科研通AI5应助小马哥36采纳,获得10
8秒前
灵巧荆发布了新的文献求助10
9秒前
小二郎应助侦察兵采纳,获得10
9秒前
爆米花完成签到 ,获得积分10
9秒前
今后应助Evan123采纳,获得10
9秒前
凤凰之玉完成签到 ,获得积分10
10秒前
shi hui应助冬瓜炖排骨采纳,获得10
10秒前
11秒前
dyh6802发布了新的文献求助10
11秒前
冷静雅青发布了新的文献求助10
11秒前
CipherSage应助猪猪hero采纳,获得10
12秒前
领导范儿应助不凡采纳,获得30
12秒前
顾矜应助坚定的亦绿采纳,获得10
13秒前
13秒前
yu完成签到,获得积分10
13秒前
Chris完成签到,获得积分10
14秒前
cookie发布了新的文献求助10
15秒前
胖仔完成签到,获得积分10
15秒前
Chan0501完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794