Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models

流量(计算机网络) 微观交通流模型 弦(物理) 理论(学习稳定性) 流量(数学) 计算机科学 统计物理学 应用数学 数学 机械 交通生成模型 物理 理论物理学 计算机安全 计算机网络 机器学习
作者
Marouane Bouadi,Bin Jia,Rui Jiang,Xingang Li,Ziyou Gao
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:165: 96-122 被引量:25
标识
DOI:10.1016/j.trb.2022.09.007
摘要

The emergence dynamics of traffic instability has always attracted particular attention. For several decades, researchers have studied the stability of traffic flow using deterministic traffic models, with less emphasis on the presence of stochastic factors. However, recent empirical and theoretical findings have demonstrated that the stochastic factors tend to destabilize traffic flow and stimulate the concave growth pattern of traffic oscillations. In this paper, we derive a string stability condition of a general stochastic continuous car-following model by the mean of the generalized Lyapunov equation. We have found, indeed, that the presence of stochasticity destabilizes the traffic flow. The impact of stochasticity depends on both the sensitivity to the gap and the sensitivity to the velocity difference. Numerical simulations of three typical car-following models have been carried out to validate our theoretical analysis. Finally, we have calibrated and validated the stochastic car-following models against empirical data. It is found that the stochastic car-following models reproduce the observed traffic instability and capture the concave growth pattern of traffic oscillations. Our results further highlight theoretically and numerically that the stochastic factors have a significant impact on traffic dynamics. • String stability condition of a general stochastic car-following model. • The presence of stochastic factors contributes to destabilizing traffic flow. • The presence of stochastic factors reproduces the observed traffic oscillations and the concave growth pattern of traffic oscillations. • The consideration of stochastic factors improves the prediction capability of traffic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助单薄的千青采纳,获得10
刚刚
稻草人完成签到,获得积分10
2秒前
3秒前
丘比特应助lxy采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
6秒前
栗子应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
汉字应助科研通管家采纳,获得10
6秒前
甜甜玫瑰应助科研通管家采纳,获得10
6秒前
tianzml0应助隐形的翅膀采纳,获得20
7秒前
scitester发布了新的文献求助10
7秒前
8秒前
8秒前
烟花应助sulh采纳,获得10
9秒前
9秒前
Progie应助Lobectomy采纳,获得10
11秒前
11秒前
11秒前
无聊的火龙果应助Yara.H采纳,获得20
11秒前
12秒前
jiajia发布了新的文献求助10
12秒前
14秒前
15秒前
16秒前
scitester完成签到,获得积分10
16秒前
77发布了新的文献求助10
16秒前
不想起昵称完成签到 ,获得积分10
17秒前
19秒前
科研通AI2S应助888采纳,获得10
19秒前
Song发布了新的文献求助10
19秒前
谨慎半凡完成签到,获得积分10
20秒前
20秒前
20秒前
我的学习发布了新的文献求助10
20秒前
21秒前
天天快乐应助浮名半生采纳,获得10
21秒前
23秒前
天天快乐应助Timon采纳,获得10
23秒前
tianzml0应助Dingyiren采纳,获得20
25秒前
sulh发布了新的文献求助10
25秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158178
求助须知:如何正确求助?哪些是违规求助? 2809497
关于积分的说明 7882282
捐赠科研通 2467982
什么是DOI,文献DOI怎么找? 1313837
科研通“疑难数据库(出版商)”最低求助积分说明 630558
版权声明 601943