Ultrasound-activated cilia for biofilm control in indwelling medical devices

生物膜 超声波 纤毛 生物医学工程 医学 放射科 生物 细胞生物学 细菌 遗传学
作者
Pedro Amado,Cornel Dillinger,Chaimae Bahou,Ali Hashemi Gheinani,Dominik Obrist,Fiona C. Burkhard,Daniel Ahmed,Francesco Clavica
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (18)
标识
DOI:10.1073/pnas.2418938122
摘要

Biofilm formation and encrustation are major issues in indwelling medical devices, such as urinary stents and catheters, as they lead to blockages and infections. Currently, to limit these effects, frequent replacements of these devices are necessary, resulting in a significant reduction in patients’ quality of life and an increase in healthcare costs. To address these challenges, by leveraging recent advancements in robotics and microfluidic technologies, we envision a self-cleaning system for indwelling medical devices equipped with bioinspired ultrasound-activated cilia. These cilia could be regularly activated transcutaneously by ultrasound, generating steady streaming, which can be used to remove encrusted deposits. In this study, we tested the hypothesis that the generated streaming can efficiently remove encrustations and biofilm from surfaces. To this end, we developed a microfluidic model featuring ultrasound-activated cilia on its wall. We showed that upon ultrasound activation, the cilia generated intense, steady streaming, reaching fluid velocity up to 10 mm/s. In all our experiments, this mechanism was able to efficiently clean typical encrustation (calcium carbonate and oxalate) and biofilm found in urological devices. The generated shear forces released, broke apart, and flushed away encrusted deposits. These findings suggest a broad potential for ultrasound-activated cilia in the maintenance of various medical devices. Compared to existing methods, our approach could reduce the need for invasive procedures, potentially lowering infection risks and enhancing patient comfort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanmin完成签到,获得积分10
刚刚
饱满天磊给饱满天磊的求助进行了留言
2秒前
坦率的尔丝完成签到,获得积分10
2秒前
科研通AI5应助NXK采纳,获得10
6秒前
aha完成签到,获得积分10
7秒前
三水完成签到,获得积分20
8秒前
CodeCraft应助白纸星星采纳,获得10
9秒前
11秒前
sensen完成签到,获得积分20
11秒前
华仔应助一路硕博采纳,获得10
12秒前
13秒前
17秒前
18秒前
房谷槐发布了新的文献求助10
18秒前
小马甲应助文艺的竺采纳,获得10
19秒前
20秒前
脑洞疼应助wangli采纳,获得10
21秒前
24秒前
NXK发布了新的文献求助10
25秒前
sss2021发布了新的文献求助10
25秒前
小伊001完成签到,获得积分10
27秒前
QZZ发布了新的文献求助10
28秒前
zzy完成签到,获得积分10
29秒前
赘婿应助寒冷的树叶采纳,获得10
29秒前
桐桐应助房谷槐采纳,获得10
30秒前
31秒前
cdercder应助QZZ采纳,获得10
33秒前
34秒前
37秒前
37秒前
热塑性哈士奇完成签到,获得积分10
39秒前
沏碗麻花发布了新的文献求助30
39秒前
41秒前
文艺的竺发布了新的文献求助10
42秒前
QZZ完成签到,获得积分10
44秒前
stephen_wang完成签到,获得积分10
47秒前
852应助自由的中蓝采纳,获得10
47秒前
一路硕博发布了新的文献求助10
47秒前
roy_chiang完成签到,获得积分0
47秒前
qqshown完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775662
求助须知:如何正确求助?哪些是违规求助? 3321243
关于积分的说明 10204340
捐赠科研通 3036109
什么是DOI,文献DOI怎么找? 1666001
邀请新用户注册赠送积分活动 797244
科研通“疑难数据库(出版商)”最低求助积分说明 757766