Ultrasound-activated cilia for biofilm control in indwelling medical devices

生物膜 超声波 微流控 纤毛 生物医学工程 纳米技术 医学 材料科学 放射科 生物 细胞生物学 细菌 遗传学
作者
Pedro Amado,Cornel Dillinger,Chaimae Bahou,Ali Hashemi Gheinani,Dominik Obrist,Fiona C. Burkhard,Daniel Ahmed,Francesco Clavica
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (18): e2418938122-e2418938122 被引量:7
标识
DOI:10.1073/pnas.2418938122
摘要

Biofilm formation and encrustation are major issues in indwelling medical devices, such as urinary stents and catheters, as they lead to blockages and infections. Currently, to limit these effects, frequent replacements of these devices are necessary, resulting in a significant reduction in patients’ quality of life and an increase in healthcare costs. To address these challenges, by leveraging recent advancements in robotics and microfluidic technologies, we envision a self-cleaning system for indwelling medical devices equipped with bioinspired ultrasound-activated cilia. These cilia could be regularly activated transcutaneously by ultrasound, generating steady streaming, which can be used to remove encrusted deposits. In this study, we tested the hypothesis that the generated streaming can efficiently remove encrustations and biofilm from surfaces. To this end, we developed a microfluidic model featuring ultrasound-activated cilia on its wall. We showed that upon ultrasound activation, the cilia generated intense, steady streaming, reaching fluid velocity up to 10 mm/s. In all our experiments, this mechanism was able to efficiently clean typical encrustation (calcium carbonate and oxalate) and biofilm found in urological devices. The generated shear forces released, broke apart, and flushed away encrusted deposits. These findings suggest a broad potential for ultrasound-activated cilia in the maintenance of various medical devices. Compared to existing methods, our approach could reduce the need for invasive procedures, potentially lowering infection risks and enhancing patient comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小凯发布了新的文献求助10
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
梧桐树发布了新的文献求助10
2秒前
2秒前
Herman发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
健忘的曼文完成签到 ,获得积分10
4秒前
4秒前
4秒前
smile发布了新的文献求助10
4秒前
5秒前
Nora完成签到,获得积分10
5秒前
海里的风关注了科研通微信公众号
5秒前
5秒前
6秒前
7秒前
善学以致用应助ssp采纳,获得10
7秒前
向依白发布了新的文献求助10
7秒前
伶俐雪曼完成签到,获得积分10
7秒前
lzhang发布了新的文献求助10
8秒前
zqy完成签到,获得积分10
8秒前
Ceci完成签到,获得积分10
9秒前
英勇的惜灵完成签到,获得积分10
9秒前
脑洞疼应助Tempo采纳,获得30
9秒前
住在月亮隔壁完成签到,获得积分10
10秒前
李善聪完成签到,获得积分10
10秒前
SciGPT应助王欧尼采纳,获得10
10秒前
10秒前
11秒前
你可真下饭完成签到 ,获得积分10
11秒前
11秒前
shuang发布了新的文献求助50
11秒前
12秒前
科研通AI6.1应助完美梨愁采纳,获得10
13秒前
打打应助优秀乐松采纳,获得10
13秒前
14秒前
蔡逸馨完成签到,获得积分20
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805195
求助须知:如何正确求助?哪些是违规求助? 5848012
关于积分的说明 15515402
捐赠科研通 4930468
什么是DOI,文献DOI怎么找? 2654642
邀请新用户注册赠送积分活动 1601437
关于科研通互助平台的介绍 1556419