已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Mechanism of Bisphenol S‐Induced Atherosclerosis Elucidated Based on Network Toxicology, Molecular Docking, and Machine Learning

对接(动物) 机制(生物学) 化学 计算生物学 双酚A 药理学 毒理 医学 生物 有机化学 物理 量子力学 护理部 环氧树脂
作者
Bing Guo,He Xuan
出处
期刊:Journal of Applied Toxicology [Wiley]
标识
DOI:10.1002/jat.4768
摘要

The increasing prevalence of environmental pollutants has raised public concern about their potential role in diseases such as atherosclerosis (AS). Existing studies suggest that chemicals, including bisphenol S (BPS), may adversely affect cardiovascular health, but the specific mechanisms remain unclear. This study aims to elucidate the effects of BPS on AS and the underlying mechanisms. Through an extensive search of databases such as ChEMBL, STITCH, SwissTargetPrediction, SuperPred, SEA, and GEO, we identified 34 potential targets related to BPS-induced AS. A target network was constructed using the STRING platform and Cytoscape software. GO and KEGG functional enrichment analysis using the DAVID database revealed that BPS may promote the occurrence of AS by interfering with critical biological processes such as glutathione metabolism, nitrogen metabolism, and tyrosine metabolism. This was followed by the selection of 4 core targets-aminopeptidase n (ANPEP), alcohol dehydrogenase 5 (ADH5), lysosomal pro-x carboxypeptidase (PRCP), and microsomal glutathione s-transferase 1 (MGST1)-using five machine learning methods. These core targets play a pivotal role in BPS-induced AS. Furthermore, molecular docking confirmed the tight binding between BPS and these core targets. In conclusion, this study provides a theoretical framework for understanding the molecular mechanisms of BPS-induced AS and contributes scientific evidence for the development of prevention and treatment strategies for cardiovascular diseases triggered by BPS exposure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
YY发布了新的文献求助10
5秒前
培娜发布了新的文献求助10
7秒前
9秒前
9秒前
安详的帽子完成签到 ,获得积分10
9秒前
miles发布了新的文献求助10
9秒前
四季养生人完成签到 ,获得积分10
11秒前
桐桐应助参苓白术炒扁豆采纳,获得10
12秒前
GXC753完成签到,获得积分10
12秒前
水心发布了新的文献求助10
13秒前
心愿完成签到 ,获得积分10
13秒前
14秒前
Unpredictable发布了新的文献求助10
15秒前
17秒前
YingFengLi发布了新的文献求助10
19秒前
明天就交稿完成签到 ,获得积分10
22秒前
22秒前
漂亮寻云完成签到 ,获得积分10
23秒前
24秒前
mammer应助mxq采纳,获得10
26秒前
Larluli发布了新的文献求助10
26秒前
27秒前
北极星发布了新的文献求助10
28秒前
斤斤发布了新的文献求助10
29秒前
现代豪完成签到,获得积分10
31秒前
乐正亦寒完成签到 ,获得积分10
33秒前
可爱的函函应助培娜采纳,获得10
34秒前
Jasper应助北极星采纳,获得10
37秒前
SciGPT应助kuie采纳,获得10
39秒前
完美世界应助Larluli采纳,获得10
39秒前
断章完成签到 ,获得积分10
40秒前
无敌z发布了新的文献求助10
41秒前
41秒前
shi hui应助rzyzen采纳,获得10
43秒前
sasha发布了新的文献求助10
46秒前
领导范儿应助科研通管家采纳,获得10
52秒前
iNk应助科研通管家采纳,获得10
52秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477302
求助须知:如何正确求助?哪些是违规求助? 3068732
关于积分的说明 9109410
捐赠科研通 2760248
什么是DOI,文献DOI怎么找? 1514725
邀请新用户注册赠送积分活动 700431
科研通“疑难数据库(出版商)”最低求助积分说明 699509