Machine learning-based prediction model for patients with recurrent Staphylococcus aureus bacteremia

金黄色葡萄球菌 菌血症 健康信息学 计算机科学 医学 人工智能 机器学习 微生物学 抗生素 公共卫生 生物 细菌 病理 遗传学
作者
Yuan Li,Shuang Song,Liying Zhu,Xiaorun Zhang,Yijiao Mou,M Lei,Wenjing Wang,Zhen Tao
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12911-025-02878-z
摘要

Staphylococcus aureus bacteremia (SAB) remains a significant contributor to both community-acquired and healthcare-associated bloodstream infections. SAB exhibits a high recurrence rate and mortality rate, leading to numerous clinical treatment challenges. Particularly, since the outbreak of COVID-19, there has been a gradual increase in SAB patients, with a growing proportion of (Methicillin-resistant Staphylococcus aureus) MRSA infections. Therefore, we have constructed and validated a pediction model for recurrent SAB using machine learning. This model aids physicians in promptly assessing the condition and intervening proactively. The patients data is sourced from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database version 2.2. The patients were divided into training and testing datasets using a 7:3 random sampling ratio. The process of feature selection employed two methods: Recursive Feature Elimination (RFE) and Least Absolute Shrinkage and Selection Operator (LASSO). Prediction models were built using Extreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and Artificial Neural Network (ANN). Model validation included Receiver Operating Characteristic (ROC) analysis, Decision Curve Analysis (DCA), and Precision-Recall Curve (PRC). We utilized SHAP (SHapley Additive exPlanations) values to demonstrate the significance of each feature and explain the XGBoost model. After screening, MRSA, PTT, RBC, RDW, Neutrophils_abs, Sodium, Calcium, Vancomycin concentration, MCHC, MCV, and Prognostic Nutritional Index(PNI) were selected as features for constructing the model. Through combined evaluation using ROC、 DCA and PRC, XGBoost demonstrated the best predictive performance, achieving an AUC value of 0.76 (95% CI: 0.66–0.85) in ROC and 0.56 (95% CI: 0.37–0.75) in PRC. Building a website based on the Xgboost model. SHAP illustrated the feature importance ranking in the XGBoost model and provided examples to explain the XGBoost model. The adoption of XGBoost for model development holds widespread acceptance in the medical domain. The prediction model for recurrent SAB, developed by our team, aids physicians in timely diagnosis and treatment of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doctor Tang发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
英俊的铭应助fanxing采纳,获得10
1秒前
优美若翠发布了新的文献求助10
1秒前
123发布了新的文献求助30
2秒前
2秒前
科研小达人完成签到,获得积分10
2秒前
2秒前
3秒前
花开富贵发布了新的文献求助10
3秒前
3秒前
颜诺完成签到 ,获得积分10
4秒前
Akasazi发布了新的文献求助10
4秒前
4秒前
4秒前
徐若楠发布了新的文献求助10
4秒前
hym完成签到,获得积分10
5秒前
楚楚发布了新的文献求助10
5秒前
nendia发布了新的文献求助10
5秒前
可爱的函函应助尘羽临风采纳,获得10
5秒前
6秒前
100发布了新的文献求助10
7秒前
古月发布了新的文献求助10
8秒前
七月发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
林林林发布了新的文献求助10
9秒前
沈林園完成签到,获得积分10
10秒前
王根基完成签到,获得积分10
10秒前
11秒前
情怀应助徐若楠采纳,获得10
11秒前
西风烈长歌啸完成签到,获得积分10
12秒前
13秒前
myheng发布了新的文献求助10
13秒前
14秒前
FashionBoy应助缥缈羊采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090