Safe Deep Reinforcement Learning-Based Constrained Optimal Control Scheme for HEV Energy Management

强化学习 计算机科学 行驶循环 最优控制 能源管理 适应性 燃料效率 电动汽车 数学优化 人工神经网络 控制(管理) 人工智能 控制工程 控制理论(社会学) 功率(物理) 工程类 能量(信号处理) 汽车工程 数学 物理 统计 生物 量子力学 生态学
作者
Zemin Eitan Liu,Quan Zhou,Yanfei Li,Shijin Shuai,Hongming Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:9 (3): 4278-4293 被引量:22
标识
DOI:10.1109/tte.2023.3240430
摘要

Considering physical constraints in online optimization and training safety is a challenge for the implementation of the deep reinforcement learning (DRL) algorithm. Especially for the nonlinear system, the mapping relationship between the output action of the agent and the control signals is difficult to obtain. This article proposes a novel DRL framework for online optimization in energy management of a power-split hybrid electric vehicle (HEV), which combines a neural network (NN)-based multiconstraints optimal strategy and a rule-based-restraints system (RBRS). The proposed method named reward-directed policy optimization (RDPO) adopts the exterior point method (EPM) and curriculum learning (CL) to direct the agent to recognize and avoid irrational control signals and optimize the fuel economy. The energy management strategy (EMS) considering fuel consumption minimization and irrational control signals' avoidance is optimized by training the agent through the world light vehicle test cycle (WLTC). A competitive fuel economy, 4.495 L/100 km, is achieved with no irrational control signals. Based on the online adaptability evaluation conducted, the fuel consumption of the vehicle under the New European Driving Cycle (NEDC) and the China Typical Urban Driving Cycle (CTUDC) has been reduced to 4.113 L/100 km and 3.221 L/100 km, respectively, with no irrational control signals. The superiority in optimization, calculation efficiency, and safety is verified through comparisons with various DRL agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ED应助nene采纳,获得10
1秒前
yin发布了新的文献求助10
1秒前
2秒前
Lucas应助淡然妙松采纳,获得10
3秒前
3秒前
好运来完成签到,获得积分10
3秒前
顾矜应助坦率的大神采纳,获得30
4秒前
Krstal完成签到 ,获得积分10
4秒前
5秒前
Orange应助番茄玉米排骨汤采纳,获得10
5秒前
5秒前
5秒前
领导范儿应助yin采纳,获得10
6秒前
7秒前
邢文瑞完成签到,获得积分10
7秒前
时尚的菲音完成签到,获得积分20
8秒前
10秒前
644943434完成签到 ,获得积分10
10秒前
邢文瑞发布了新的文献求助10
10秒前
小鱼儿完成签到,获得积分10
11秒前
11秒前
上官若男应助lh采纳,获得30
12秒前
柯一一应助千灯采纳,获得10
12秒前
乐乐应助young采纳,获得10
12秒前
13秒前
16秒前
小李博士发布了新的文献求助10
17秒前
感动鞋垫发布了新的文献求助10
18秒前
菲菲发布了新的文献求助10
18秒前
paul发布了新的文献求助10
20秒前
20秒前
20秒前
任性的数据线完成签到,获得积分10
22秒前
JamesPei应助小李博士采纳,获得10
23秒前
完美世界应助超人也读博采纳,获得10
24秒前
24秒前
费笑柳发布了新的文献求助10
24秒前
25秒前
25秒前
paul完成签到,获得积分10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962851
求助须知:如何正确求助?哪些是违规求助? 3508777
关于积分的说明 11143063
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791638
邀请新用户注册赠送积分活动 873002
科研通“疑难数据库(出版商)”最低求助积分说明 803577