亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning of electrophysiological signals for the prediction of ventricular arrhythmias: systematic review and examination of heterogeneity between studies

医学 联营 荟萃分析 诊断优势比 接收机工作特性 机器学习 人工智能 预测建模 内科学 心脏病学 计算机科学
作者
Maarten Z H Kolk,Brototo Deb,Samuel Ruipérez-Campillo,Neil K. Bhatia,Paul Clopton,Arthur A.M. Wilde,Sanjiv M. Narayan,Reinoud E. Knops,Fleur V.Y. Tjong
出处
期刊:EBioMedicine [Elsevier]
卷期号:89: 104462-104462 被引量:16
标识
DOI:10.1016/j.ebiom.2023.104462
摘要

BackgroundVentricular arrhythmia (VA) precipitating sudden cardiac arrest (SCD) is among the most frequent causes of death and pose a high burden on public health systems worldwide. The increasing availability of electrophysiological signals collected through conventional methods (e.g. electrocardiography (ECG)) and digital health technologies (e.g. wearable devices) in combination with novel predictive analytics using machine learning (ML) and deep learning (DL) hold potential for personalised predictions of arrhythmic events.MethodsThis systematic review and exploratory meta-analysis assesses the state-of-the-art of ML/DL models of electrophysiological signals for personalised prediction of malignant VA or SCD, and studies potential causes of bias (PROSPERO, reference: CRD42021283464). Five electronic databases were searched to identify eligible studies. Pooled estimates of the diagnostic odds ratio (DOR) and summary area under the curve (AUROC) were calculated. Meta-analyses were performed separately for studies using publicly available, ad-hoc datasets, versus targeted clinical data acquisition. Studies were scored on risk of bias by the PROBAST tool.Findings2194 studies were identified of which 46 were included in the systematic review and 32 in the meta-analysis. Pooling of individual models demonstrated a summary AUROC of 0.856 (95% CI 0.755–0.909) for short-term (time-to-event up to 72 h) prediction and AUROC of 0.876 (95% CI 0.642–0.980) for long-term prediction (time-to-event up to years). While models developed on ad-hoc sets had higher pooled performance (AUROC 0.919, 95% CI 0.867–0.952), they had a high risk of bias related to the re-use and overlap of small ad-hoc datasets, choices of ML tool and a lack of external model validation.InterpretationML and DL models appear to accurately predict malignant VA and SCD. However, wide heterogeneity between studies, in part due to small ad-hoc datasets and choice of ML model, may reduce the ability to generalise and should be addressed in future studies.FundingThis publication is part of the project DEEP RISK ICD (with project number 452019308) of the research programme Rubicon which is (partly) financed by the Dutch Research Council (NWO). This research is partly funded by the Amsterdam Cardiovascular Sciences (personal grant F.V.Y.T).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Spring发布了新的文献求助10
刚刚
Lianna完成签到 ,获得积分10
9秒前
asdfqaz完成签到,获得积分10
1分钟前
Georgechan完成签到,获得积分10
2分钟前
田様应助fff采纳,获得10
2分钟前
2分钟前
3分钟前
fff发布了新的文献求助10
4分钟前
张小汉完成签到,获得积分10
4分钟前
CUN完成签到,获得积分10
4分钟前
Owen应助fff采纳,获得10
4分钟前
5分钟前
NexusExplorer应助Yogurt采纳,获得10
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
fff发布了新的文献求助10
6分钟前
在水一方应助fff采纳,获得10
6分钟前
月军完成签到,获得积分10
6分钟前
6分钟前
金钰贝儿完成签到,获得积分10
7分钟前
8分钟前
9分钟前
fff发布了新的文献求助10
9分钟前
赘婿应助fff采纳,获得10
10分钟前
巅峰囚冰完成签到,获得积分10
10分钟前
10分钟前
10分钟前
zsmj23完成签到 ,获得积分0
10分钟前
11分钟前
fff发布了新的文献求助10
11分钟前
lixiaoya完成签到,获得积分10
11分钟前
NexusExplorer应助fff采纳,获得10
12分钟前
莓啤汽完成签到 ,获得积分10
12分钟前
13分钟前
fff发布了新的文献求助10
13分钟前
vitamin完成签到 ,获得积分10
14分钟前
dandan完成签到,获得积分10
14分钟前
M先生完成签到,获得积分10
14分钟前
14分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068122
求助须知:如何正确求助?哪些是违规求助? 2722122
关于积分的说明 7476029
捐赠科研通 2369115
什么是DOI,文献DOI怎么找? 1256205
科研通“疑难数据库(出版商)”最低求助积分说明 609490
版权声明 596826