A Novel Cuprotosis-Related lncRNA Signature Effectively Predicts Prognosis in Glioma Patients

胶质瘤 比例危险模型 癌变 肿瘤科 长非编码RNA 生物 内科学 计算生物学 癌症 生物信息学 医学 基因 癌症研究 核糖核酸 遗传学
作者
Shuaishuai Wu,Augustine K. Ballah,Wenqiang Che,Xiangyu Wang
出处
期刊:Journal of Molecular Neuroscience [Springer Nature]
卷期号:73 (2-3): 185-204 被引量:2
标识
DOI:10.1007/s12031-023-02102-5
摘要

Cuprotosis is a novel and different cell death mechanism from the existing known ones that can be used to explore new approaches to treating cancer. Just like ferroptosis and pyroptosis, cuprotosis-related genes regulate various types of tumorigenesis, invasion, and metastasis. However, the relationship between cuprotosis-related long non-coding RNA (cuprotosis-related lncRNA) in glioma development and prognosis has not been investigated. We obtained relevant data from the Genotype-Tissue Expression (GTEx), Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and published articles. First, we identified 365 cuprotosis-related lncRNAs based on 10 cuprotosis-related differential genes (|R2|> 0.4, p < 0.001). Then using Lasso and Cox regression analysis methods, 12 prognostic cuprotosis-related lncRNAs were obtained and constructed the CuLncSigi risk score formula. Our next step was to divide the tumor gliomas into two groups (high risk and low risk) based on the median risk score, and we found that patients in the high-risk group had a significantly worse prognosis. We used internal and external validation methods to simultaneously analyze and validate that the risk score model has good predictive power for patients with glioma. Next, we also performed enrichment analyses such as GSEA and aaGSEA and evaluated the relationship between immune-related drugs and tumor treatment. In conclusion, we successfully constructed a formula of cuprotosis-related lncRNAs with a powerful predictive function. More importantly, our study paves the way for exploring cuprotosis mechanisms in glioma occurrence and development and helps to find new relevant biomarkers for glioma early identification and diagnosis and to investigate new therapeutic approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助轻松的语海采纳,获得10
刚刚
Mic应助明理的帆布鞋采纳,获得10
刚刚
刚刚
1秒前
qu发布了新的文献求助10
1秒前
ss发布了新的文献求助10
1秒前
木叶DAYTOY发布了新的文献求助10
4秒前
科研执修完成签到,获得积分10
4秒前
5秒前
MiaQ发布了新的文献求助10
5秒前
zyt发布了新的文献求助20
6秒前
李兴完成签到,获得积分10
6秒前
kk雯完成签到,获得积分10
7秒前
ss完成签到,获得积分10
7秒前
dove完成签到 ,获得积分10
7秒前
8秒前
wlscj应助坦率雪枫采纳,获得20
8秒前
正直的如凡完成签到,获得积分10
9秒前
10秒前
12秒前
无量发布了新的文献求助30
12秒前
梅子酒发布了新的文献求助10
12秒前
蔡博颖完成签到,获得积分10
13秒前
陀飞轮发布了新的文献求助10
13秒前
David完成签到,获得积分10
13秒前
13秒前
14秒前
霸气的老虎完成签到,获得积分10
15秒前
香蕉觅云应助忧虑的鼠标采纳,获得10
16秒前
16秒前
今后应助wzx采纳,获得10
17秒前
爆米花应助蔡博颖采纳,获得10
17秒前
jiaman1031发布了新的文献求助10
17秒前
云朵完成签到,获得积分10
18秒前
19秒前
CodeCraft应助酷猫采纳,获得10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424481
求助须知:如何正确求助?哪些是违规求助? 4538810
关于积分的说明 14163993
捐赠科研通 4455806
什么是DOI,文献DOI怎么找? 2443899
邀请新用户注册赠送积分活动 1435026
关于科研通互助平台的介绍 1412337