A Novel Cuprotosis-Related lncRNA Signature Effectively Predicts Prognosis in Glioma Patients

胶质瘤 比例危险模型 癌变 肿瘤科 长非编码RNA 生物 内科学 计算生物学 癌症 生物信息学 医学 基因 癌症研究 核糖核酸 遗传学
作者
Shuaishuai Wu,Augustine K. Ballah,Wenqiang Che,Xiangyu Wang
出处
期刊:Journal of Molecular Neuroscience [Springer Nature]
卷期号:73 (2-3): 185-204 被引量:2
标识
DOI:10.1007/s12031-023-02102-5
摘要

Cuprotosis is a novel and different cell death mechanism from the existing known ones that can be used to explore new approaches to treating cancer. Just like ferroptosis and pyroptosis, cuprotosis-related genes regulate various types of tumorigenesis, invasion, and metastasis. However, the relationship between cuprotosis-related long non-coding RNA (cuprotosis-related lncRNA) in glioma development and prognosis has not been investigated. We obtained relevant data from the Genotype-Tissue Expression (GTEx), Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and published articles. First, we identified 365 cuprotosis-related lncRNAs based on 10 cuprotosis-related differential genes (|R2|> 0.4, p < 0.001). Then using Lasso and Cox regression analysis methods, 12 prognostic cuprotosis-related lncRNAs were obtained and constructed the CuLncSigi risk score formula. Our next step was to divide the tumor gliomas into two groups (high risk and low risk) based on the median risk score, and we found that patients in the high-risk group had a significantly worse prognosis. We used internal and external validation methods to simultaneously analyze and validate that the risk score model has good predictive power for patients with glioma. Next, we also performed enrichment analyses such as GSEA and aaGSEA and evaluated the relationship between immune-related drugs and tumor treatment. In conclusion, we successfully constructed a formula of cuprotosis-related lncRNAs with a powerful predictive function. More importantly, our study paves the way for exploring cuprotosis mechanisms in glioma occurrence and development and helps to find new relevant biomarkers for glioma early identification and diagnosis and to investigate new therapeutic approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miles发布了新的文献求助10
刚刚
wan4221完成签到,获得积分10
3秒前
3秒前
AAA完成签到,获得积分10
3秒前
sdshi发布了新的文献求助10
4秒前
852应助潇潇雨歇采纳,获得10
4秒前
4秒前
星辰大海应助仁爱晓瑶采纳,获得10
5秒前
6秒前
作风作雨给作风作雨的求助进行了留言
6秒前
传奇3应助living笑白采纳,获得10
7秒前
研友_VZG7GZ应助缓慢咖啡采纳,获得10
7秒前
123完成签到 ,获得积分10
7秒前
尊敬谷波发布了新的文献求助10
8秒前
8秒前
8秒前
斯文败类应助谨慎的寒松采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
onetec发布了新的文献求助10
10秒前
zh发布了新的文献求助10
10秒前
大模型应助123采纳,获得10
12秒前
13秒前
体贴雪碧发布了新的文献求助10
14秒前
CipherSage应助高春瑞采纳,获得10
14秒前
15秒前
小宸完成签到,获得积分10
16秒前
17秒前
默默灭绝关注了科研通微信公众号
18秒前
小宸发布了新的文献求助10
19秒前
czr发布了新的文献求助10
19秒前
19秒前
尊敬谷波完成签到,获得积分10
20秒前
蓝天发布了新的文献求助10
20秒前
朴实绝音完成签到,获得积分10
20秒前
缓慢咖啡发布了新的文献求助10
21秒前
22秒前
WZH123456完成签到,获得积分10
22秒前
拉哈80应助Loik采纳,获得10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737037
求助须知:如何正确求助?哪些是违规求助? 5370241
关于积分的说明 15334617
捐赠科研通 4880797
什么是DOI,文献DOI怎么找? 2622998
邀请新用户注册赠送积分活动 1571878
关于科研通互助平台的介绍 1528721