A Novel Cuprotosis-Related lncRNA Signature Effectively Predicts Prognosis in Glioma Patients

胶质瘤 比例危险模型 癌变 肿瘤科 长非编码RNA 生物 内科学 计算生物学 癌症 生物信息学 医学 基因 癌症研究 核糖核酸 遗传学
作者
Shuaishuai Wu,Augustine K. Ballah,Wenqiang Che,Xiangyu Wang
出处
期刊:Journal of Molecular Neuroscience [Springer Science+Business Media]
卷期号:73 (2-3): 185-204 被引量:2
标识
DOI:10.1007/s12031-023-02102-5
摘要

Cuprotosis is a novel and different cell death mechanism from the existing known ones that can be used to explore new approaches to treating cancer. Just like ferroptosis and pyroptosis, cuprotosis-related genes regulate various types of tumorigenesis, invasion, and metastasis. However, the relationship between cuprotosis-related long non-coding RNA (cuprotosis-related lncRNA) in glioma development and prognosis has not been investigated. We obtained relevant data from the Genotype-Tissue Expression (GTEx), Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and published articles. First, we identified 365 cuprotosis-related lncRNAs based on 10 cuprotosis-related differential genes (|R2|> 0.4, p < 0.001). Then using Lasso and Cox regression analysis methods, 12 prognostic cuprotosis-related lncRNAs were obtained and constructed the CuLncSigi risk score formula. Our next step was to divide the tumor gliomas into two groups (high risk and low risk) based on the median risk score, and we found that patients in the high-risk group had a significantly worse prognosis. We used internal and external validation methods to simultaneously analyze and validate that the risk score model has good predictive power for patients with glioma. Next, we also performed enrichment analyses such as GSEA and aaGSEA and evaluated the relationship between immune-related drugs and tumor treatment. In conclusion, we successfully constructed a formula of cuprotosis-related lncRNAs with a powerful predictive function. More importantly, our study paves the way for exploring cuprotosis mechanisms in glioma occurrence and development and helps to find new relevant biomarkers for glioma early identification and diagnosis and to investigate new therapeutic approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助风中的凝安采纳,获得10
1秒前
1秒前
赘婿应助听闻采纳,获得10
1秒前
哭泣凌雪发布了新的文献求助10
2秒前
金虎发布了新的文献求助10
2秒前
cora发布了新的文献求助20
3秒前
顺心白开水完成签到,获得积分10
3秒前
执着谷兰发布了新的文献求助10
4秒前
萧一完成签到,获得积分10
4秒前
5秒前
机灵的觅山完成签到,获得积分20
5秒前
高高雪瑶完成签到,获得积分10
5秒前
杰杰发布了新的文献求助10
5秒前
岳凯完成签到 ,获得积分10
5秒前
Gin发布了新的文献求助10
6秒前
Jasper应助monoklatt采纳,获得10
6秒前
泥踩完成签到,获得积分10
7秒前
Eternitymaria完成签到,获得积分10
8秒前
和光同尘完成签到,获得积分10
8秒前
Avatar完成签到,获得积分10
8秒前
哭泣凌雪完成签到,获得积分10
8秒前
嘻嘻嘻发布了新的文献求助10
9秒前
乐乐应助杰杰采纳,获得10
9秒前
9秒前
10秒前
烟花应助金虎采纳,获得10
10秒前
Nansen完成签到,获得积分10
10秒前
Lucas应助故意的鼠标采纳,获得10
11秒前
11秒前
思源应助千寻采纳,获得10
12秒前
传奇3应助cora采纳,获得10
13秒前
瘦瘦妖妖发布了新的文献求助10
14秒前
15秒前
楚轩发布了新的文献求助10
15秒前
优雅猕猴桃给优雅猕猴桃的求助进行了留言
15秒前
lemongulf完成签到 ,获得积分10
16秒前
FashionBoy应助D.lon采纳,获得10
16秒前
yuruibo发布了新的文献求助10
16秒前
sanch发布了新的文献求助10
16秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352