A Novel Cuprotosis-Related lncRNA Signature Effectively Predicts Prognosis in Glioma Patients

胶质瘤 比例危险模型 癌变 肿瘤科 长非编码RNA 生物 内科学 计算生物学 癌症 生物信息学 医学 基因 癌症研究 核糖核酸 遗传学
作者
Shuaishuai Wu,Augustine K. Ballah,Wenqiang Che,Xiangyu Wang
出处
期刊:Journal of Molecular Neuroscience [Springer Nature]
卷期号:73 (2-3): 185-204 被引量:2
标识
DOI:10.1007/s12031-023-02102-5
摘要

Cuprotosis is a novel and different cell death mechanism from the existing known ones that can be used to explore new approaches to treating cancer. Just like ferroptosis and pyroptosis, cuprotosis-related genes regulate various types of tumorigenesis, invasion, and metastasis. However, the relationship between cuprotosis-related long non-coding RNA (cuprotosis-related lncRNA) in glioma development and prognosis has not been investigated. We obtained relevant data from the Genotype-Tissue Expression (GTEx), Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and published articles. First, we identified 365 cuprotosis-related lncRNAs based on 10 cuprotosis-related differential genes (|R2|> 0.4, p < 0.001). Then using Lasso and Cox regression analysis methods, 12 prognostic cuprotosis-related lncRNAs were obtained and constructed the CuLncSigi risk score formula. Our next step was to divide the tumor gliomas into two groups (high risk and low risk) based on the median risk score, and we found that patients in the high-risk group had a significantly worse prognosis. We used internal and external validation methods to simultaneously analyze and validate that the risk score model has good predictive power for patients with glioma. Next, we also performed enrichment analyses such as GSEA and aaGSEA and evaluated the relationship between immune-related drugs and tumor treatment. In conclusion, we successfully constructed a formula of cuprotosis-related lncRNAs with a powerful predictive function. More importantly, our study paves the way for exploring cuprotosis mechanisms in glioma occurrence and development and helps to find new relevant biomarkers for glioma early identification and diagnosis and to investigate new therapeutic approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Jia采纳,获得10
刚刚
彭于晏应助过时的小萱采纳,获得30
2秒前
缥缈的忆山完成签到,获得积分10
2秒前
学术蝗虫完成签到,获得积分10
3秒前
7777777发布了新的文献求助10
4秒前
凌奕添完成签到 ,获得积分10
5秒前
yeheifenggao关注了科研通微信公众号
5秒前
桐桐应助KaleemUllah采纳,获得10
7秒前
8秒前
小芭乐完成签到 ,获得积分10
9秒前
9秒前
CHENHL完成签到,获得积分10
12秒前
Miracle完成签到,获得积分0
12秒前
思源应助胡图图采纳,获得10
13秒前
欢喜小霸王完成签到,获得积分10
14秒前
Believer完成签到,获得积分10
15秒前
15秒前
mm完成签到,获得积分10
16秒前
16秒前
科研通AI6.1应助wuxunxun2015采纳,获得10
18秒前
Arain完成签到,获得积分20
19秒前
白小超人完成签到 ,获得积分10
19秒前
19秒前
20秒前
Arain发布了新的文献求助10
24秒前
乔滴滴发布了新的文献求助10
24秒前
Shi完成签到,获得积分10
24秒前
耍酷曼青完成签到,获得积分10
24秒前
科研通AI6.1应助容棋采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
无花果应助hdd采纳,获得10
25秒前
一顿鸡米花完成签到,获得积分10
26秒前
27秒前
脑洞疼应助希希采纳,获得10
27秒前
量子星尘发布了新的文献求助10
27秒前
激动的访文完成签到,获得积分10
27秒前
28秒前
火星上唇膏完成签到 ,获得积分10
29秒前
所所应助Darling采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734883
求助须知:如何正确求助?哪些是违规求助? 5356945
关于积分的说明 15327966
捐赠科研通 4879384
什么是DOI,文献DOI怎么找? 2621880
邀请新用户注册赠送积分活动 1571089
关于科研通互助平台的介绍 1527872