A Novel Cuprotosis-Related lncRNA Signature Effectively Predicts Prognosis in Glioma Patients

胶质瘤 比例危险模型 癌变 肿瘤科 长非编码RNA 生物 内科学 计算生物学 癌症 生物信息学 医学 基因 癌症研究 核糖核酸 遗传学
作者
Shuaishuai Wu,Augustine K. Ballah,Wenqiang Che,Xiangyu Wang
出处
期刊:Journal of Molecular Neuroscience [Springer Nature]
卷期号:73 (2-3): 185-204 被引量:2
标识
DOI:10.1007/s12031-023-02102-5
摘要

Cuprotosis is a novel and different cell death mechanism from the existing known ones that can be used to explore new approaches to treating cancer. Just like ferroptosis and pyroptosis, cuprotosis-related genes regulate various types of tumorigenesis, invasion, and metastasis. However, the relationship between cuprotosis-related long non-coding RNA (cuprotosis-related lncRNA) in glioma development and prognosis has not been investigated. We obtained relevant data from the Genotype-Tissue Expression (GTEx), Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and published articles. First, we identified 365 cuprotosis-related lncRNAs based on 10 cuprotosis-related differential genes (|R2|> 0.4, p < 0.001). Then using Lasso and Cox regression analysis methods, 12 prognostic cuprotosis-related lncRNAs were obtained and constructed the CuLncSigi risk score formula. Our next step was to divide the tumor gliomas into two groups (high risk and low risk) based on the median risk score, and we found that patients in the high-risk group had a significantly worse prognosis. We used internal and external validation methods to simultaneously analyze and validate that the risk score model has good predictive power for patients with glioma. Next, we also performed enrichment analyses such as GSEA and aaGSEA and evaluated the relationship between immune-related drugs and tumor treatment. In conclusion, we successfully constructed a formula of cuprotosis-related lncRNAs with a powerful predictive function. More importantly, our study paves the way for exploring cuprotosis mechanisms in glioma occurrence and development and helps to find new relevant biomarkers for glioma early identification and diagnosis and to investigate new therapeutic approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sweet发布了新的文献求助10
刚刚
善学以致用应助徐新雨采纳,获得10
刚刚
瓜子完成签到,获得积分10
刚刚
1秒前
Avery完成签到,获得积分10
1秒前
1秒前
1秒前
每天都想发文章完成签到,获得积分10
2秒前
王恒完成签到,获得积分10
3秒前
英俊的铭应助哇哇哇哇采纳,获得10
3秒前
llt发布了新的文献求助10
3秒前
4秒前
5秒前
踏实孤容完成签到,获得积分10
5秒前
月亮发布了新的文献求助10
5秒前
jiji完成签到,获得积分20
6秒前
smottom应助研友_8Y26PL采纳,获得10
6秒前
Rzz完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
dddd完成签到,获得积分10
7秒前
勤奋一一应助smallsix采纳,获得10
9秒前
10秒前
11秒前
Owen应助谨慎枫叶采纳,获得10
11秒前
12333发布了新的文献求助10
11秒前
Xuan完成签到,获得积分10
12秒前
SciGPT应助不二子采纳,获得10
13秒前
kk0612完成签到,获得积分20
13秒前
diyanbruker发布了新的文献求助10
13秒前
zwyingg发布了新的文献求助10
15秒前
11发布了新的文献求助10
15秒前
Momomo举报咔咔咔咔求助涉嫌违规
15秒前
keyanlv发布了新的文献求助10
15秒前
Sweet完成签到,获得积分20
16秒前
16秒前
希望天下0贩的0应助ccshi采纳,获得10
17秒前
小婕是小婕完成签到,获得积分10
18秒前
刘杭完成签到,获得积分20
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694202
求助须知:如何正确求助?哪些是违规求助? 5096252
关于积分的说明 15213274
捐赠科研通 4850853
什么是DOI,文献DOI怎么找? 2602038
邀请新用户注册赠送积分活动 1553878
关于科研通互助平台的介绍 1511814