A Novel Cuprotosis-Related lncRNA Signature Effectively Predicts Prognosis in Glioma Patients

胶质瘤 比例危险模型 癌变 肿瘤科 长非编码RNA 生物 内科学 计算生物学 癌症 生物信息学 医学 基因 癌症研究 核糖核酸 遗传学
作者
Shuaishuai Wu,Augustine K. Ballah,Wenqiang Che,Xiangyu Wang
出处
期刊:Journal of Molecular Neuroscience [Springer Science+Business Media]
卷期号:73 (2-3): 185-204 被引量:2
标识
DOI:10.1007/s12031-023-02102-5
摘要

Cuprotosis is a novel and different cell death mechanism from the existing known ones that can be used to explore new approaches to treating cancer. Just like ferroptosis and pyroptosis, cuprotosis-related genes regulate various types of tumorigenesis, invasion, and metastasis. However, the relationship between cuprotosis-related long non-coding RNA (cuprotosis-related lncRNA) in glioma development and prognosis has not been investigated. We obtained relevant data from the Genotype-Tissue Expression (GTEx), Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and published articles. First, we identified 365 cuprotosis-related lncRNAs based on 10 cuprotosis-related differential genes (|R2|> 0.4, p < 0.001). Then using Lasso and Cox regression analysis methods, 12 prognostic cuprotosis-related lncRNAs were obtained and constructed the CuLncSigi risk score formula. Our next step was to divide the tumor gliomas into two groups (high risk and low risk) based on the median risk score, and we found that patients in the high-risk group had a significantly worse prognosis. We used internal and external validation methods to simultaneously analyze and validate that the risk score model has good predictive power for patients with glioma. Next, we also performed enrichment analyses such as GSEA and aaGSEA and evaluated the relationship between immune-related drugs and tumor treatment. In conclusion, we successfully constructed a formula of cuprotosis-related lncRNAs with a powerful predictive function. More importantly, our study paves the way for exploring cuprotosis mechanisms in glioma occurrence and development and helps to find new relevant biomarkers for glioma early identification and diagnosis and to investigate new therapeutic approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江潇完成签到,获得积分10
1秒前
wkwwkwkwk完成签到 ,获得积分10
2秒前
可yi完成签到,获得积分10
3秒前
金条完成签到,获得积分10
3秒前
杜妤涵完成签到,获得积分10
4秒前
漂亮的若颜完成签到 ,获得积分10
4秒前
CFSJ完成签到,获得积分10
6秒前
110完成签到,获得积分10
6秒前
7秒前
流星雨完成签到 ,获得积分10
7秒前
w020507完成签到,获得积分10
9秒前
会飞的流氓兔完成签到 ,获得积分10
9秒前
zcious完成签到,获得积分10
12秒前
刘钱美子完成签到,获得积分10
13秒前
anan完成签到 ,获得积分10
13秒前
李_完成签到,获得积分10
14秒前
wanmiao12完成签到,获得积分10
14秒前
万松辉完成签到,获得积分10
16秒前
K13完成签到,获得积分10
17秒前
18秒前
Ava应助黄卡人采纳,获得10
19秒前
冷静铅笔完成签到,获得积分10
19秒前
小二郎应助笑傲江湖采纳,获得20
19秒前
小二郎应助xmyyy采纳,获得10
19秒前
邓桂灿发布了新的文献求助20
21秒前
21秒前
22秒前
景时完成签到,获得积分10
22秒前
边边角角落落完成签到 ,获得积分20
22秒前
by完成签到,获得积分10
23秒前
陈老太完成签到 ,获得积分10
24秒前
边边角角落落关注了科研通微信公众号
24秒前
26秒前
26秒前
酷酷煎饼完成签到,获得积分10
27秒前
君子扑火完成签到,获得积分10
27秒前
小抱枕发布了新的文献求助10
27秒前
zxt完成签到 ,获得积分10
27秒前
xmyyy完成签到,获得积分10
28秒前
lagom完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294333
求助须知:如何正确求助?哪些是违规求助? 4444199
关于积分的说明 13832392
捐赠科研通 4328271
什么是DOI,文献DOI怎么找? 2376032
邀请新用户注册赠送积分活动 1371362
关于科研通互助平台的介绍 1336532