A GNSS/LiDAR/IMU Pose Estimation System Based on Collaborative Fusion of Factor Map and Filtering

全球导航卫星系统应用 计算机科学 惯性测量装置 因子图 同时定位和映射 计算机视觉 传感器融合 卡尔曼滤波器 稳健性(进化) 人工智能 移动地图 全球定位系统 惯性导航系统 激光雷达 实时计算 遥感 移动机器人 方向(向量空间) 地理 电信 数学 机器人 生物化学 化学 解码方法 几何学 点云 基因
作者
Honglin Chen,Wei Wu,Si Zhang,Chaohong Wu,Ruofei Zhong
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 790-790 被引量:2
标识
DOI:10.3390/rs15030790
摘要

One of the core issues of mobile measurement is the pose estimation of the carrier. The classic Global Navigation Satellite System/Inertial Measurement Unit (GNSS/IMU) integrated navigation scheme has high positioning accuracy but is vulnerable to Global Navigation Satellite System (GNSS) signal occlusion and multipath effect. Simultaneous Localization and Mapping (SLAM) is not affected by signal occlusion, but there are problems such as error accumulation and scene degradation. The multi-sensor fusion scheme combining the two technologies can effectively expand the scene coverage and improve the positioning accuracy and system robustness. However, the current scheme has some limitations. On the one hand, GNSS plays a less important role in most SLAM systems, only for initialization or as a closed-loop factor and other auxiliary work. On the other hand, in the fusion method, most of the current systems only use filtering or graph optimization, without taking into account the advantages of both. Aiming at pose estimation for mobile carriers, this paper combines the advantages of the global optimization of the factor graph and the local optimization of filtering and proposes a GNSS-IMU-LiDAR Constraint Kalman Filter (abbreviated as GIL-CKF), which has the characteristics of full coverage and effectively improving absolute accuracy and high output frequency. The scheme proposed in this paper consists of three parts. Firstly, an extensible factor map is used to fuse the positioning information from different sources, including GNSS, IMU, LiDAR, and a closed-loop map, to maintain a high-precision SLAM system, and the output is used as Multi-Sensor-Fusion-Odometry (MSFO). Then, the scene is divided according to the GNSS quality factor, and a Scene Optimizer (SO) is designed to filter GNSS pose and MSFO. Finally, the results are input into the Extended Kalman Filter (EKF) together with the original IMU data for further optimization and smoothing. The experimental results show that the integration of high-precision GNSS positioning information with IMU, LiDAR, a closed-loop map, and other information through the factor map can effectively suppress error accumulation and improve the overall accuracy of the SLAM system. The SO based on GNSS indicators can fully retain high-precision GNSS positioning information, effectively play their respective advantages of filtering and graph optimization, and alleviate the conflict between global and local optimization. SO with EKF filtering furthers optimization, can improve the output frequency, and smooth the trajectory. GIL-CKF can effectively improve the accuracy and robustness of pose estimation and has obvious advantages in multi-sensor scene complementarity, partial road section accuracy improvement, and high input frequency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
贪玩的蝴蝶完成签到 ,获得积分10
4秒前
周洋完成签到,获得积分10
4秒前
Chosen_1完成签到,获得积分10
4秒前
hh完成签到,获得积分10
4秒前
iNk应助啦啦啦采纳,获得20
5秒前
老妖怪完成签到,获得积分10
5秒前
稳重的灵安完成签到,获得积分10
6秒前
6秒前
niania发布了新的文献求助10
7秒前
9秒前
wangwangwang完成签到,获得积分10
9秒前
美好斓发布了新的文献求助20
10秒前
whandzxl完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
dengqin完成签到 ,获得积分10
19秒前
19秒前
21秒前
Gauss应助234采纳,获得30
21秒前
power完成签到,获得积分10
23秒前
Rondab应助tl123456采纳,获得10
25秒前
名丿完成签到,获得积分10
25秒前
Hatexist应助香蕉秋寒采纳,获得10
26秒前
愉快幻悲发布了新的文献求助10
26秒前
29秒前
小雨点完成签到,获得积分10
30秒前
32秒前
32秒前
32秒前
keeno完成签到,获得积分10
33秒前
nicewink发布了新的文献求助10
34秒前
星河梦枕完成签到,获得积分10
35秒前
pluto完成签到,获得积分20
35秒前
小张发布了新的文献求助30
36秒前
dengdengdeng发布了新的文献求助10
36秒前
36秒前
愉快幻悲完成签到,获得积分10
38秒前
ecoli发布了新的文献求助10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991794
求助须知:如何正确求助?哪些是违规求助? 3532981
关于积分的说明 11260197
捐赠科研通 3272241
什么是DOI,文献DOI怎么找? 1805664
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809405