A GNSS/LiDAR/IMU Pose Estimation System Based on Collaborative Fusion of Factor Map and Filtering

全球导航卫星系统应用 计算机科学 惯性测量装置 因子图 同时定位和映射 计算机视觉 传感器融合 卡尔曼滤波器 稳健性(进化) 人工智能 移动地图 全球定位系统 惯性导航系统 激光雷达 实时计算 遥感 移动机器人 方向(向量空间) 地理 电信 数学 机器人 生物化学 化学 解码方法 几何学 点云 基因
作者
Honglin Chen,Wei Wu,Si Zhang,Chaohong Wu,Ruofei Zhong
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (3): 790-790 被引量:21
标识
DOI:10.3390/rs15030790
摘要

One of the core issues of mobile measurement is the pose estimation of the carrier. The classic Global Navigation Satellite System/Inertial Measurement Unit (GNSS/IMU) integrated navigation scheme has high positioning accuracy but is vulnerable to Global Navigation Satellite System (GNSS) signal occlusion and multipath effect. Simultaneous Localization and Mapping (SLAM) is not affected by signal occlusion, but there are problems such as error accumulation and scene degradation. The multi-sensor fusion scheme combining the two technologies can effectively expand the scene coverage and improve the positioning accuracy and system robustness. However, the current scheme has some limitations. On the one hand, GNSS plays a less important role in most SLAM systems, only for initialization or as a closed-loop factor and other auxiliary work. On the other hand, in the fusion method, most of the current systems only use filtering or graph optimization, without taking into account the advantages of both. Aiming at pose estimation for mobile carriers, this paper combines the advantages of the global optimization of the factor graph and the local optimization of filtering and proposes a GNSS-IMU-LiDAR Constraint Kalman Filter (abbreviated as GIL-CKF), which has the characteristics of full coverage and effectively improving absolute accuracy and high output frequency. The scheme proposed in this paper consists of three parts. Firstly, an extensible factor map is used to fuse the positioning information from different sources, including GNSS, IMU, LiDAR, and a closed-loop map, to maintain a high-precision SLAM system, and the output is used as Multi-Sensor-Fusion-Odometry (MSFO). Then, the scene is divided according to the GNSS quality factor, and a Scene Optimizer (SO) is designed to filter GNSS pose and MSFO. Finally, the results are input into the Extended Kalman Filter (EKF) together with the original IMU data for further optimization and smoothing. The experimental results show that the integration of high-precision GNSS positioning information with IMU, LiDAR, a closed-loop map, and other information through the factor map can effectively suppress error accumulation and improve the overall accuracy of the SLAM system. The SO based on GNSS indicators can fully retain high-precision GNSS positioning information, effectively play their respective advantages of filtering and graph optimization, and alleviate the conflict between global and local optimization. SO with EKF filtering furthers optimization, can improve the output frequency, and smooth the trajectory. GIL-CKF can effectively improve the accuracy and robustness of pose estimation and has obvious advantages in multi-sensor scene complementarity, partial road section accuracy improvement, and high input frequency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的绮露完成签到 ,获得积分10
刚刚
橙子完成签到 ,获得积分10
刚刚
安静的皮皮虾完成签到,获得积分20
1秒前
2秒前
2秒前
赘婿应助陈美宏采纳,获得10
2秒前
匿名发布了新的文献求助400
3秒前
Ayao完成签到,获得积分10
3秒前
zm发布了新的文献求助10
4秒前
joinn完成签到,获得积分10
4秒前
6秒前
李爱国应助孟孟采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
大个应助YOOO采纳,获得10
8秒前
9秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
15秒前
fossil完成签到,获得积分10
15秒前
16秒前
顾越发布了新的文献求助10
16秒前
16秒前
陈美宏发布了新的文献求助10
16秒前
18秒前
HH完成签到,获得积分10
18秒前
21秒前
拼搏的亦丝完成签到 ,获得积分10
22秒前
科研通AI6应助doomedQL采纳,获得10
22秒前
十个勤天发布了新的文献求助10
22秒前
积极的凝云完成签到,获得积分10
22秒前
22秒前
孟孟发布了新的文献求助10
23秒前
gao发布了新的文献求助10
24秒前
小妞完成签到,获得积分10
24秒前
像个间谍完成签到 ,获得积分10
26秒前
kuxiaolei完成签到,获得积分10
26秒前
香蕉梨愁完成签到,获得积分10
26秒前
小D爱科研完成签到,获得积分20
26秒前
Woodward发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734970
求助须知:如何正确求助?哪些是违规求助? 5357733
关于积分的说明 15328255
捐赠科研通 4879430
什么是DOI,文献DOI怎么找? 2621934
邀请新用户注册赠送积分活动 1571143
关于科研通互助平台的介绍 1527931