A GNSS/LiDAR/IMU Pose Estimation System Based on Collaborative Fusion of Factor Map and Filtering

全球导航卫星系统应用 计算机科学 惯性测量装置 因子图 同时定位和映射 计算机视觉 传感器融合 卡尔曼滤波器 稳健性(进化) 人工智能 移动地图 全球定位系统 惯性导航系统 激光雷达 实时计算 遥感 移动机器人 方向(向量空间) 地理 电信 数学 机器人 几何学 化学 点云 基因 生物化学 解码方法
作者
Honglin Chen,Wei Wu,Si Zhang,Chaohong Wu,Ruofei Zhong
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (3): 790-790 被引量:2
标识
DOI:10.3390/rs15030790
摘要

One of the core issues of mobile measurement is the pose estimation of the carrier. The classic Global Navigation Satellite System/Inertial Measurement Unit (GNSS/IMU) integrated navigation scheme has high positioning accuracy but is vulnerable to Global Navigation Satellite System (GNSS) signal occlusion and multipath effect. Simultaneous Localization and Mapping (SLAM) is not affected by signal occlusion, but there are problems such as error accumulation and scene degradation. The multi-sensor fusion scheme combining the two technologies can effectively expand the scene coverage and improve the positioning accuracy and system robustness. However, the current scheme has some limitations. On the one hand, GNSS plays a less important role in most SLAM systems, only for initialization or as a closed-loop factor and other auxiliary work. On the other hand, in the fusion method, most of the current systems only use filtering or graph optimization, without taking into account the advantages of both. Aiming at pose estimation for mobile carriers, this paper combines the advantages of the global optimization of the factor graph and the local optimization of filtering and proposes a GNSS-IMU-LiDAR Constraint Kalman Filter (abbreviated as GIL-CKF), which has the characteristics of full coverage and effectively improving absolute accuracy and high output frequency. The scheme proposed in this paper consists of three parts. Firstly, an extensible factor map is used to fuse the positioning information from different sources, including GNSS, IMU, LiDAR, and a closed-loop map, to maintain a high-precision SLAM system, and the output is used as Multi-Sensor-Fusion-Odometry (MSFO). Then, the scene is divided according to the GNSS quality factor, and a Scene Optimizer (SO) is designed to filter GNSS pose and MSFO. Finally, the results are input into the Extended Kalman Filter (EKF) together with the original IMU data for further optimization and smoothing. The experimental results show that the integration of high-precision GNSS positioning information with IMU, LiDAR, a closed-loop map, and other information through the factor map can effectively suppress error accumulation and improve the overall accuracy of the SLAM system. The SO based on GNSS indicators can fully retain high-precision GNSS positioning information, effectively play their respective advantages of filtering and graph optimization, and alleviate the conflict between global and local optimization. SO with EKF filtering furthers optimization, can improve the output frequency, and smooth the trajectory. GIL-CKF can effectively improve the accuracy and robustness of pose estimation and has obvious advantages in multi-sensor scene complementarity, partial road section accuracy improvement, and high input frequency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着月饼完成签到,获得积分10
刚刚
甜晞完成签到,获得积分10
3秒前
汕头凯奇发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
大模型应助xiang采纳,获得10
5秒前
沉静的清涟完成签到,获得积分10
5秒前
7秒前
1035646426发布了新的文献求助30
10秒前
11秒前
11秒前
12秒前
EvilS完成签到,获得积分10
12秒前
13秒前
流川封完成签到,获得积分10
13秒前
太和竹签发布了新的文献求助10
14秒前
余烬22发布了新的文献求助20
15秒前
塵埃完成签到,获得积分10
15秒前
16秒前
hmhu完成签到,获得积分10
17秒前
斯文败类应助路其安采纳,获得10
19秒前
hmhu发布了新的文献求助10
20秒前
li完成签到 ,获得积分10
21秒前
懵懂的梦秋应助p65采纳,获得10
22秒前
xiaozeng完成签到,获得积分10
24秒前
wry完成签到,获得积分10
24秒前
25秒前
随机子应助梦安采纳,获得10
26秒前
27秒前
28秒前
清秀寻菱发布了新的文献求助20
28秒前
太和竹签完成签到,获得积分10
29秒前
29秒前
风趣谷槐完成签到,获得积分10
29秒前
爆米花应助1035646426采纳,获得10
29秒前
阳光下的味道完成签到,获得积分10
31秒前
海龙发布了新的文献求助10
31秒前
SS发布了新的文献求助10
33秒前
34秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168308
求助须知:如何正确求助?哪些是违规求助? 2819642
关于积分的说明 7927284
捐赠科研通 2479437
什么是DOI,文献DOI怎么找? 1320927
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458