亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A GNSS/LiDAR/IMU Pose Estimation System Based on Collaborative Fusion of Factor Map and Filtering

全球导航卫星系统应用 计算机科学 惯性测量装置 因子图 同时定位和映射 计算机视觉 传感器融合 卡尔曼滤波器 稳健性(进化) 人工智能 移动地图 全球定位系统 惯性导航系统 激光雷达 实时计算 遥感 移动机器人 方向(向量空间) 地理 电信 数学 机器人 生物化学 化学 解码方法 几何学 点云 基因
作者
Honglin Chen,Wei Wu,Si Zhang,Chaohong Wu,Ruofei Zhong
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (3): 790-790 被引量:21
标识
DOI:10.3390/rs15030790
摘要

One of the core issues of mobile measurement is the pose estimation of the carrier. The classic Global Navigation Satellite System/Inertial Measurement Unit (GNSS/IMU) integrated navigation scheme has high positioning accuracy but is vulnerable to Global Navigation Satellite System (GNSS) signal occlusion and multipath effect. Simultaneous Localization and Mapping (SLAM) is not affected by signal occlusion, but there are problems such as error accumulation and scene degradation. The multi-sensor fusion scheme combining the two technologies can effectively expand the scene coverage and improve the positioning accuracy and system robustness. However, the current scheme has some limitations. On the one hand, GNSS plays a less important role in most SLAM systems, only for initialization or as a closed-loop factor and other auxiliary work. On the other hand, in the fusion method, most of the current systems only use filtering or graph optimization, without taking into account the advantages of both. Aiming at pose estimation for mobile carriers, this paper combines the advantages of the global optimization of the factor graph and the local optimization of filtering and proposes a GNSS-IMU-LiDAR Constraint Kalman Filter (abbreviated as GIL-CKF), which has the characteristics of full coverage and effectively improving absolute accuracy and high output frequency. The scheme proposed in this paper consists of three parts. Firstly, an extensible factor map is used to fuse the positioning information from different sources, including GNSS, IMU, LiDAR, and a closed-loop map, to maintain a high-precision SLAM system, and the output is used as Multi-Sensor-Fusion-Odometry (MSFO). Then, the scene is divided according to the GNSS quality factor, and a Scene Optimizer (SO) is designed to filter GNSS pose and MSFO. Finally, the results are input into the Extended Kalman Filter (EKF) together with the original IMU data for further optimization and smoothing. The experimental results show that the integration of high-precision GNSS positioning information with IMU, LiDAR, a closed-loop map, and other information through the factor map can effectively suppress error accumulation and improve the overall accuracy of the SLAM system. The SO based on GNSS indicators can fully retain high-precision GNSS positioning information, effectively play their respective advantages of filtering and graph optimization, and alleviate the conflict between global and local optimization. SO with EKF filtering furthers optimization, can improve the output frequency, and smooth the trajectory. GIL-CKF can effectively improve the accuracy and robustness of pose estimation and has obvious advantages in multi-sensor scene complementarity, partial road section accuracy improvement, and high input frequency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC发布了新的文献求助10
16秒前
万能图书馆应助清晨仪仪采纳,获得30
16秒前
Yihan完成签到,获得积分10
28秒前
科研王者发布了新的文献求助10
32秒前
老万的小迷弟完成签到,获得积分10
33秒前
JoeyJin完成签到,获得积分10
38秒前
我是老大应助科研王者采纳,获得10
38秒前
1分钟前
yeeeee发布了新的文献求助10
1分钟前
ttkx发布了新的文献求助10
1分钟前
CipherSage应助yeeeee采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
artos发布了新的文献求助30
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
科研通AI6应助artos采纳,获得10
3分钟前
华仔应助CC采纳,获得30
3分钟前
4分钟前
CC发布了新的文献求助30
4分钟前
执着梦柏完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
5分钟前
清晨仪仪发布了新的文献求助30
5分钟前
5分钟前
步念发布了新的文献求助30
5分钟前
科研通AI6应助步念采纳,获得30
5分钟前
Ava应助查莉采纳,获得10
5分钟前
清晨仪仪发布了新的文献求助10
6分钟前
麻辣香锅发布了新的文献求助10
6分钟前
科研通AI6应助CC采纳,获得10
7分钟前
李李爱种花完成签到 ,获得积分10
7分钟前
7分钟前
查莉发布了新的文献求助10
7分钟前
7分钟前
科研通AI6应助麻辣香锅采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622241
求助须知:如何正确求助?哪些是违规求助? 4707275
关于积分的说明 14938986
捐赠科研通 4769648
什么是DOI,文献DOI怎么找? 2552255
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475053