已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A GNSS/LiDAR/IMU Pose Estimation System Based on Collaborative Fusion of Factor Map and Filtering

全球导航卫星系统应用 计算机科学 惯性测量装置 因子图 同时定位和映射 计算机视觉 传感器融合 卡尔曼滤波器 稳健性(进化) 人工智能 移动地图 全球定位系统 惯性导航系统 激光雷达 实时计算 遥感 移动机器人 方向(向量空间) 地理 电信 数学 机器人 生物化学 化学 解码方法 几何学 点云 基因
作者
Honglin Chen,Wei Wu,Si Zhang,Chaohong Wu,Ruofei Zhong
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (3): 790-790 被引量:21
标识
DOI:10.3390/rs15030790
摘要

One of the core issues of mobile measurement is the pose estimation of the carrier. The classic Global Navigation Satellite System/Inertial Measurement Unit (GNSS/IMU) integrated navigation scheme has high positioning accuracy but is vulnerable to Global Navigation Satellite System (GNSS) signal occlusion and multipath effect. Simultaneous Localization and Mapping (SLAM) is not affected by signal occlusion, but there are problems such as error accumulation and scene degradation. The multi-sensor fusion scheme combining the two technologies can effectively expand the scene coverage and improve the positioning accuracy and system robustness. However, the current scheme has some limitations. On the one hand, GNSS plays a less important role in most SLAM systems, only for initialization or as a closed-loop factor and other auxiliary work. On the other hand, in the fusion method, most of the current systems only use filtering or graph optimization, without taking into account the advantages of both. Aiming at pose estimation for mobile carriers, this paper combines the advantages of the global optimization of the factor graph and the local optimization of filtering and proposes a GNSS-IMU-LiDAR Constraint Kalman Filter (abbreviated as GIL-CKF), which has the characteristics of full coverage and effectively improving absolute accuracy and high output frequency. The scheme proposed in this paper consists of three parts. Firstly, an extensible factor map is used to fuse the positioning information from different sources, including GNSS, IMU, LiDAR, and a closed-loop map, to maintain a high-precision SLAM system, and the output is used as Multi-Sensor-Fusion-Odometry (MSFO). Then, the scene is divided according to the GNSS quality factor, and a Scene Optimizer (SO) is designed to filter GNSS pose and MSFO. Finally, the results are input into the Extended Kalman Filter (EKF) together with the original IMU data for further optimization and smoothing. The experimental results show that the integration of high-precision GNSS positioning information with IMU, LiDAR, a closed-loop map, and other information through the factor map can effectively suppress error accumulation and improve the overall accuracy of the SLAM system. The SO based on GNSS indicators can fully retain high-precision GNSS positioning information, effectively play their respective advantages of filtering and graph optimization, and alleviate the conflict between global and local optimization. SO with EKF filtering furthers optimization, can improve the output frequency, and smooth the trajectory. GIL-CKF can effectively improve the accuracy and robustness of pose estimation and has obvious advantages in multi-sensor scene complementarity, partial road section accuracy improvement, and high input frequency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栖枝完成签到 ,获得积分10
刚刚
Lucas应助跳跃昊焱采纳,获得10
刚刚
chenYL完成签到,获得积分10
刚刚
王小明发布了新的文献求助10
刚刚
暗号完成签到 ,获得积分10
刚刚
1秒前
乌冬面123完成签到,获得积分20
1秒前
1秒前
安详凡完成签到 ,获得积分10
1秒前
Jepsen完成签到 ,获得积分10
1秒前
Thecold发布了新的文献求助10
2秒前
Chen完成签到 ,获得积分10
2秒前
激情的健柏完成签到 ,获得积分10
2秒前
神仙渔发布了新的文献求助10
2秒前
聆(*^_^*)完成签到 ,获得积分10
3秒前
Ava应助波风水门采纳,获得30
3秒前
妮可罗宾完成签到 ,获得积分10
4秒前
pathway完成签到 ,获得积分10
4秒前
冷静新烟完成签到,获得积分10
4秒前
4秒前
酷炫的大有完成签到,获得积分20
4秒前
潇洒的语蝶完成签到 ,获得积分10
5秒前
肥仔完成签到 ,获得积分10
6秒前
辛勤远望发布了新的文献求助10
6秒前
简单白风完成签到 ,获得积分10
6秒前
心灵美语兰完成签到 ,获得积分10
6秒前
啊啊啊啊啊啊完成签到,获得积分10
7秒前
墨辰完成签到 ,获得积分10
8秒前
fisher完成签到 ,获得积分10
8秒前
无情的踏歌完成签到,获得积分0
8秒前
9秒前
766465完成签到 ,获得积分0
9秒前
xzx发布了新的文献求助10
9秒前
小易完成签到 ,获得积分10
10秒前
忽远忽近的她完成签到 ,获得积分10
10秒前
遇上就这样吧完成签到,获得积分0
11秒前
王小明完成签到 ,获得积分20
11秒前
11秒前
11秒前
Thecold完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590141
求助须知:如何正确求助?哪些是违规求助? 4674591
关于积分的说明 14794672
捐赠科研通 4630392
什么是DOI,文献DOI怎么找? 2532610
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10