Machine learning applications on intratumoral heterogeneity in glioblastoma using single-cell RNA sequencing data

胶质母细胞瘤 鉴定(生物学) 生物标志物 计算生物学 机器学习 生物 人工智能 计算机科学 细胞 脑瘤 癌症 核糖核酸 生物信息学 基因 癌症研究 遗传学 医学 病理 植物
作者
Harold Brayan Arteaga-Arteaga,Mariana S. Candamil-Cortés,Brian Breaux,Pablo Guillen-Rondon,Simón Orozco-Arias,Reinel Tabares-Soto
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (5): 428-441 被引量:10
标识
DOI:10.1093/bfgp/elad002
摘要

Artificial intelligence is revolutionizing all fields that affect people's lives and health. One of the most critical applications is in the study of tumors. It is the case of glioblastoma (GBM) that has behaviors that need to be understood to develop effective therapies. Due to advances in single-cell RNA sequencing (scRNA-seq), it is possible to understand the cellular and molecular heterogeneity in the GBM. Given that there are different cell groups in these tumors, there is a need to apply Machine Learning (ML) algorithms. It will allow extracting information to understand how cancer changes and broaden the search for effective treatments. We proposed multiple comparisons of ML algorithms to classify cell groups based on the GBM scRNA-seq data. This broad comparison spectrum can show the scientific-medical community which models can achieve the best performance in this task. In this work are classified the following cell groups: Tumor Core (TC), Tumor Periphery (TP) and Normal Periphery (NP), in binary and multi-class scenarios. This work presents the biomarker candidates found for the models with the best results. The analyses presented here allow us to verify the biomarker candidates to understand the genetic characteristics of GBM, which may be affected by a suitable identification of GBM heterogeneity. This work obtained for the four scenarios covered cross-validation results of $93.03\% \pm 5.37\%$, $97.42\% \pm 3.94\%$, $98.27\% \pm 1.81\%$ and $93.04\% \pm 6.88\%$ for the classification of TP versus TC, TP versus NP, NP versus TP and TC (TPC) and NP versus TP versus TC, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bz完成签到,获得积分10
刚刚
风评发布了新的文献求助10
2秒前
bz发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
乔心发布了新的文献求助10
6秒前
=======发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
ding应助xhz采纳,获得10
8秒前
星辰发布了新的文献求助10
8秒前
9秒前
9秒前
LYDC完成签到,获得积分10
9秒前
orixero应助鲲鹏戏龙采纳,获得10
9秒前
筱姐姐发布了新的文献求助10
10秒前
SCINEXUS应助duolaAmeng采纳,获得50
10秒前
12秒前
12秒前
小蘑菇应助橄榄绿采纳,获得10
12秒前
12秒前
12秒前
rqfeng完成签到,获得积分10
13秒前
霸气安筠发布了新的文献求助30
14秒前
14秒前
qiuqiu发布了新的文献求助10
14秒前
14秒前
希望天下0贩的0应助风评采纳,获得10
14秒前
15秒前
柳七发布了新的文献求助10
16秒前
小高发布了新的文献求助10
16秒前
17秒前
勤恳发布了新的文献求助10
18秒前
sanshi发布了新的文献求助10
19秒前
nagi发布了新的文献求助10
19秒前
红糖驴发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476893
求助须知:如何正确求助?哪些是违规求助? 3068470
关于积分的说明 9107919
捐赠科研通 2759871
什么是DOI,文献DOI怎么找? 1514435
邀请新用户注册赠送积分活动 700240
科研通“疑难数据库(出版商)”最低求助积分说明 699412