自编码
生成语法
深度学习
计算机科学
判别式
对抗制
循环神经网络
人工智能
变压器
直觉
生成模型
机器学习
卷积神经网络
人工神经网络
认知科学
心理学
工程类
电压
电气工程
出处
期刊:Emerald Publishing Limited eBooks
[Emerald (MCB UP)]
日期:2023-03-13
卷期号:: 239-271
标识
DOI:10.1108/s1548-643520230000020014
摘要
The expansion of marketing data is encouraging the growing use of deep learning (DL) in marketing. I summarize the intuition behind deep learning and explain the mechanisms of six popular algorithms: three discriminative (convolutional neural network (CNN), recurrent neural network (RNN), and Transformer), two generative (variational autoencoder (VAE) and generative adversarial networks (GAN)), and one RL (DQN). I discuss what marketing problems DL is useful for and what fueled its growth in recent years. I emphasize the power and flexibility of DL for modeling unstructured data when formal theories and knowledge are absent. I also describe future research directions.
科研通智能强力驱动
Strongly Powered by AbleSci AI