化学
物理化学
分子
从头算
过渡态理论
反应速率常数
激进的
一氧化碳
计算化学
光化学
有机化学
动力学
催化作用
物理
量子力学
作者
Parandaman Arathala,Rabi A. Musah
出处
期刊:ACS earth and space chemistry
[American Chemical Society]
日期:2023-04-04
卷期号:7 (5): 1049-1059
被引量:6
标识
DOI:10.1021/acsearthspacechem.3c00004
摘要
The gas phase mechanism of the chlorine atom (•Cl)-initiated oxidation of methane sulfonamide (CH3S(═O)2NH2; MSAM) has been elucidated using ab initio/DFT electronic structure methods and chemical kinetic modeling. A reaction that commences via abstraction of an H-atom from the methyl group of MSAM to form a transition state with a barrier height of ∼4.8 kcal mol–1 above that of the MSAM + •Cl reactants, yielding •CH2S(═O)2NH2 + HCl was found to be a major path in comparison with the other possibilities. Rate coefficients for all possible H-atom abstraction reactions were calculated using the canonical variational transition state theory (CVT) with the small curvature tunneling (SCT) method in the temperature range of 200–400 K. The rate coefficient for the major reaction was found to be 1.6 × 10–14 cm3 molecule–1 s–1 at 300 K, while the overall rate coefficient for the MSAM + •Cl reaction is found to be 1.7 × 10–14 cm3 molecule–1 s–1 at 300 K. In addition, SCT contributions, branching ratios for each reaction path, and the atmospheric implications are provided and discussed. Based on the results, the MSAM + •Cl reaction proceeds to form •CH2S(═O)2NH2, which then further reacts with 3O2 under oxygen-rich conditions to form the corresponding RO2 adduct (•OOCH2S(═O)2NH2). Subsequent reactions of this radical result in the formation of greenhouse gases such as sulfur dioxide (SO2), carbon dioxide (CO2), carbon monoxide (CO), nitric acid (HNO3), nitrous oxide (N2O), and formic acid (HC(O)OH), which may contribute to climate change and formation of secondary organic aerosols and acid rain.
科研通智能强力驱动
Strongly Powered by AbleSci AI