Redefining normal breast cell populations using long noncoding RNAs

生物 遗传学 计算生物学 细胞
作者
Mainá Bitar,S. Rivera,Isabela Almeida,Wei Shi,Kaltin Ferguson,Jonathan Beesley,Sunil R. Lakhani,Stacey L. Edwards,Juliet D. French
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:51 (12): 6389-6410 被引量:10
标识
DOI:10.1093/nar/gkad339
摘要

Single-cell RNAseq has allowed unprecedented insight into gene expression across different cell populations in normal tissue and disease states. However, almost all studies rely on annotated gene sets to capture gene expression levels and sequencing reads that do not align to known genes are discarded. Here, we discover thousands of long noncoding RNAs (lncRNAs) expressed in human mammary epithelial cells and analyze their expression in individual cells of the normal breast. We show that lncRNA expression alone can discriminate between luminal and basal cell types and define subpopulations of both compartments. Clustering cells based on lncRNA expression identified additional basal subpopulations, compared to clustering based on annotated gene expression, suggesting that lncRNAs can provide an additional layer of information to better distinguish breast cell subpopulations. In contrast, these breast-specific lncRNAs poorly distinguish brain cell populations, highlighting the need to annotate tissue-specific lncRNAs prior to expression analyses. We also identified a panel of 100 breast lncRNAs that could discern breast cancer subtypes better than protein-coding markers. Overall, our results suggest that lncRNAs are an unexplored resource for new biomarker and therapeutic target discovery in the normal breast and breast cancer subtypes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小太爷完成签到,获得积分10
刚刚
Colossus完成签到,获得积分10
刚刚
独特乘云发布了新的文献求助10
刚刚
Anquan完成签到,获得积分10
1秒前
生动的哈密瓜关注了科研通微信公众号
1秒前
orixero应助王其超采纳,获得10
1秒前
小艾应助21采纳,获得10
1秒前
南方姑娘完成签到,获得积分10
1秒前
张大恒发布了新的文献求助10
2秒前
桃子发布了新的文献求助10
2秒前
xin完成签到,获得积分10
3秒前
3秒前
4秒前
共享精神应助ice_cream采纳,获得10
5秒前
大模型应助小方想读博采纳,获得10
5秒前
5秒前
充电宝应助独特乘云采纳,获得10
6秒前
hank发布了新的文献求助10
6秒前
acz完成签到,获得积分10
6秒前
安静参完成签到,获得积分20
6秒前
小艾应助守着她可好采纳,获得10
7秒前
qweycl完成签到,获得积分20
7秒前
张大恒完成签到,获得积分10
7秒前
8秒前
8秒前
meiguang发布了新的文献求助10
8秒前
10秒前
10秒前
李健的小迷弟应助shr采纳,获得10
10秒前
10秒前
华仔应助123采纳,获得10
11秒前
11秒前
顾矜应助zzzlk采纳,获得10
11秒前
JamesPei应助qweycl采纳,获得10
12秒前
tdtk发布了新的文献求助10
12秒前
Marciu33应助wert采纳,获得10
13秒前
13秒前
33完成签到,获得积分10
14秒前
14秒前
模糊中正应助11采纳,获得30
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053