Factor Augmented Inverse Regression and its Application to Microbiome Data Analysis

多项式logistic回归 计算机科学 推论 估计员 计数数据 过度分散 数学 选型 支持向量机 Lasso(编程语言) 统计 降维 机器学习 人工智能 泊松分布 万维网
作者
Daolin Pang,Hongyu Zhao,Tao Wang
出处
期刊:Journal of the American Statistical Association [Informa]
卷期号:: 1-11
标识
DOI:10.1080/01621459.2023.2231577
摘要

AbstractWe investigate the relationship between count data that inform the relative abundance of features of a composition, and factors that influence the composition. Our work is motivated from microbiome studies aiming to extract microbial signatures that are predictive of host phenotypes based on data collected from a group of individuals harboring radically different microbial communities. We introduce multinomial Factor Augmented Inverse Regression (FAIR) of the count vector onto response factors as a general framework for obtaining low-dimensional summaries of the count vector that preserve information relevant to the response. By augmenting known response factors with random latent factors, FAIR extends multinomial logistic regression to account for overdispersion and general correlations among counts. The projections of the count vector onto the loading vectors represent additional contribution, in addition to the projections that result from response factors. The method of maximum variational likelihood and a fast variational expectation-maximization algorithm are proposed for approximate inference based on variational approximation, and the asymptotic properties of the resulting estimator are derived. Moreover, a hybrid information criterion and a group-lasso penalized criterion are proposed for model selection. The effectiveness of FAIR is illustrated through simulations and application to a microbiome dataset. Supplementary materials for this article are available online.Keywords: Factor regressionLatent confoundingSequence readsSufficient dimension reductionVariational inference Supplementary MaterialsAppendix: It includes details on variational EM algorithm for FAIR and derivation of EN2(d), details on proofs of theoretical properties, and additional simulations. (Appendix.pdf)AcknowledgmentsThe authors would like to thank the Editor, the Associate Editor, and anonymous referees for their constructive comments that greatly improved this manuscript.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingThis research was supported in part by the National Natural Science Foundation of China10.13039/501100001809 (12222111, 11971017), the Fundamental Research Funds for the Central Universities, and Neil Shen’s SJTU Medical Research Fund of Shanghai Jiao Tong University.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻涵菱完成签到,获得积分10
刚刚
吕耀炜完成签到,获得积分10
刚刚
刚刚
刚刚
简称王完成签到 ,获得积分10
刚刚
蓝莓松饼完成签到,获得积分10
1秒前
一路高飛完成签到,获得积分10
1秒前
赘婿应助andyxrz采纳,获得10
1秒前
Zhang完成签到,获得积分10
1秒前
2秒前
年轻冥茗完成签到,获得积分10
2秒前
apple发布了新的文献求助10
3秒前
CarterXD完成签到,获得积分10
3秒前
紧张的友灵完成签到,获得积分10
3秒前
SciGPT应助之仔饼采纳,获得10
4秒前
liudiqiu应助追寻的易烟采纳,获得10
4秒前
Chem is try发布了新的文献求助10
4秒前
4秒前
vsoar完成签到,获得积分10
4秒前
5秒前
6秒前
GGGGGGGGGG发布了新的文献求助10
6秒前
6秒前
打打应助hhh采纳,获得10
7秒前
抓恐龙关注了科研通微信公众号
7秒前
碳点godfather完成签到,获得积分10
7秒前
ren完成签到,获得积分20
7秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
8秒前
TG_FY完成签到,获得积分10
8秒前
8秒前
hhh完成签到,获得积分10
8秒前
JamesPei应助诗轩采纳,获得10
9秒前
TT完成签到,获得积分10
10秒前
reck发布了新的文献求助10
10秒前
11秒前
DK发布了新的文献求助10
11秒前
英俊的铭应助ren采纳,获得10
11秒前
圈圈发布了新的文献求助10
11秒前
乐乱完成签到 ,获得积分10
12秒前
415484112完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672