亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Factor Augmented Inverse Regression and its Application to Microbiome Data Analysis

多项式logistic回归 计算机科学 推论 估计员 计数数据 过度分散 数学 选型 支持向量机 Lasso(编程语言) 统计 降维 机器学习 人工智能 万维网 泊松分布
作者
Daolin Pang,Hongyu Zhao,Tao Wang
出处
期刊:Journal of the American Statistical Association [Informa]
卷期号:: 1-11
标识
DOI:10.1080/01621459.2023.2231577
摘要

AbstractWe investigate the relationship between count data that inform the relative abundance of features of a composition, and factors that influence the composition. Our work is motivated from microbiome studies aiming to extract microbial signatures that are predictive of host phenotypes based on data collected from a group of individuals harboring radically different microbial communities. We introduce multinomial Factor Augmented Inverse Regression (FAIR) of the count vector onto response factors as a general framework for obtaining low-dimensional summaries of the count vector that preserve information relevant to the response. By augmenting known response factors with random latent factors, FAIR extends multinomial logistic regression to account for overdispersion and general correlations among counts. The projections of the count vector onto the loading vectors represent additional contribution, in addition to the projections that result from response factors. The method of maximum variational likelihood and a fast variational expectation-maximization algorithm are proposed for approximate inference based on variational approximation, and the asymptotic properties of the resulting estimator are derived. Moreover, a hybrid information criterion and a group-lasso penalized criterion are proposed for model selection. The effectiveness of FAIR is illustrated through simulations and application to a microbiome dataset. Supplementary materials for this article are available online.Keywords: Factor regressionLatent confoundingSequence readsSufficient dimension reductionVariational inference Supplementary MaterialsAppendix: It includes details on variational EM algorithm for FAIR and derivation of EN2(d), details on proofs of theoretical properties, and additional simulations. (Appendix.pdf)AcknowledgmentsThe authors would like to thank the Editor, the Associate Editor, and anonymous referees for their constructive comments that greatly improved this manuscript.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingThis research was supported in part by the National Natural Science Foundation of China10.13039/501100001809 (12222111, 11971017), the Fundamental Research Funds for the Central Universities, and Neil Shen’s SJTU Medical Research Fund of Shanghai Jiao Tong University.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助Timelapse采纳,获得10
3秒前
甜橙完成签到 ,获得积分10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
NattyPoe应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得20
13秒前
16秒前
852应助一碗鱼采纳,获得10
29秒前
wanci应助andrele采纳,获得10
33秒前
34秒前
量子星尘发布了新的文献求助10
35秒前
42秒前
一碗鱼发布了新的文献求助10
46秒前
51秒前
theo完成签到 ,获得积分10
56秒前
糕冷草莓完成签到,获得积分10
1分钟前
英姑应助一碗鱼采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
一碗鱼发布了新的文献求助10
2分钟前
一碗鱼完成签到,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
小糊涂仙儿完成签到 ,获得积分10
2分钟前
3分钟前
Isabelle发布了新的文献求助10
3分钟前
Timelapse发布了新的文献求助10
3分钟前
ZhiyunXu2012完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
惘然111222发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
beginnerofsci发布了新的文献求助10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
toutou应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423