Synchroextracting frequency synchronous chirplet transform for fault diagnosis of rotating machinery under varying speed conditions

啁啾声 瞬时相位 振动 断层(地质) 时频分析 信号(编程语言) 计算机科学 噪音(视频) 控制理论(社会学) 人工智能 声学 电信 物理 雷达 光学 地质学 图像(数学) 地震学 程序设计语言 激光器 控制(管理)
作者
Chuancang Ding,Weiguo Huang,Changqing Shen,Xingxing Jiang,Jun Wang,Zhongkui Zhu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:3
标识
DOI:10.1177/14759217231181308
摘要

The fault diagnosis of rotating machine is essential to maintain its operational safety and avoid catastrophic accidents. The vibration signals collected from the varying speed rotating machinery are non-stationary, and time–frequency analysis (TFA) is a feasible method for varying speed fault diagnosis by revealing time-varying instantaneous frequency (IF) information in signals. However, most conventional TFA methods are not specifically designed for rotating machinery vibration signals and may not be able to handle these signals, especially in the presence of noise. Therefore, this paper develops a unique TFA method designated as synchroextracting frequency synchronous chirplet transform (SEFSCT) for vibration signal analysis and fault diagnosis of rotating machinery. In the proposed method, the frequency synchronous chirplet transform (FSCT) that utilizes the frequency synchronous chirp rate is first introduced, which takes fully into account the intrinsic proportional relationship of time-varying IFs of the signal. Then, to further concentrate the time–frequency representation (TFR) of FSCT, the synchroextracting operator is constructed based on the Gaussian modulated linear chirp model and the SEFSCT is naturally developed by integrating the FSCT and synchroextracting operator. With the proposed SEFSCT, a high-quality TFR can be generated, thus the time-varying IFs and mechanical failure can be accurately identified. The SEFSCT is employed to deal with synthetic and actual signals, and the results illustrate its efficacy in handling non-stationary signals and diagnosing the mechanical failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxy发布了新的文献求助10
1秒前
1秒前
boboking完成签到,获得积分10
3秒前
学勾巴完成签到,获得积分10
7秒前
7秒前
ww完成签到,获得积分10
8秒前
孤独秋烟完成签到,获得积分10
8秒前
9秒前
卫傲柏发布了新的文献求助10
9秒前
栗子完成签到,获得积分10
9秒前
栗子发布了新的文献求助10
12秒前
13秒前
我刚上小学完成签到,获得积分10
14秒前
Lam完成签到 ,获得积分10
14秒前
白蓝发布了新的文献求助10
16秒前
YUYU完成签到,获得积分10
16秒前
善良安梦完成签到,获得积分10
17秒前
lcc应助xx采纳,获得10
17秒前
sissiarno应助long0809采纳,获得100
19秒前
田様应助白蓝采纳,获得10
25秒前
Pan完成签到,获得积分10
28秒前
29秒前
29秒前
个性的饼干完成签到,获得积分10
30秒前
wangeil007完成签到,获得积分10
31秒前
高大的白莲完成签到 ,获得积分10
31秒前
菜大炮发布了新的文献求助10
34秒前
34秒前
自转无风发布了新的文献求助10
38秒前
郁乾完成签到,获得积分10
38秒前
ZY完成签到 ,获得积分10
42秒前
丘比特应助sxy采纳,获得10
45秒前
45秒前
MorningStar完成签到,获得积分10
47秒前
YunZeng完成签到,获得积分10
49秒前
wanci应助科研通管家采纳,获得10
50秒前
咖啡豆应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
领导范儿应助科研通管家采纳,获得10
50秒前
SciGPT应助科研通管家采纳,获得10
50秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791184
关于积分的说明 7798192
捐赠科研通 2447619
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194