A multi-model data fusion methodology for reservoir water quality based on machine learning algorithms and bayesian maximum entropy

机器学习 支持向量机 人工智能 随机森林 计算机科学 感知器 算法 水质 多层感知器 数据挖掘 贝叶斯概率 人工神经网络 生态学 生物
作者
Mohammad Zamani,Mohammad Reza Nikoo,Fereshteh Niknazar,Ghazi Al-Rawas,Malik Al-Wardy,Amir H. Gandomi
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:416: 137885-137885 被引量:32
标识
DOI:10.1016/j.jclepro.2023.137885
摘要

A major concern in the management of reservoirs is water quality because of the negative consequences it has on both environment and human life. Artificial Intelligence (AI) concept produces a reliable framework to recognize complicated and non-linear correlations between input and output data. Although various machine learning (ML) algorithms in recent studies were employed to predict water quality variables, the existing literature lacks exploring the combination of these algorithms, which has the potential to significantly amplify the outcomes achieved by individual models. Thus, the current study aims to bridge this knowledge gap by evaluating the precision of Random Forest Regression (RFR), Support Vector Regression, Multilayer Perceptron (MLP), and Bayesian Maximum Entropy-based Fusion (BMEF) models to estimate such water quality variables as dissolved oxygen (DO) and chlorophyll-a (Chl-a). The comparisons were conducted in two primary stages: (1) a comparison of the outcomes of different ML algorithms with each other, and (2) comparing the ML algorithms' findings with that of the BMEF model, which considers uncertainty. These comparisons were evaluated using robust statistical measures, and, finally, to indicate the utility and efficacy of the newly introduced framework, it was efficiently utilized in Wadi Dayqah Dam, which is situated in Oman. The findings indicated that, throughout both training and testing phases, the BMEF model outperformed individual machine learning models, namely MLP, RFR, and SVR by 5%, 26%, and 10%, respectively, when R2 and Chl-a are considered as evaluation index and water quality variables, respectively. Additionally, as the individual ML models are not capable of predicting electrical conductivity and oxidation-reduction potential efficiently, the BMEF model leads to better results by R2=0.89, which outperforms MLP (R2=0.81), RFR (R2=0.79), and SVR (R2=0.62) for oxidation-reduction potential. Regarding the study limits of the present study, spatio-temporal data should be collected over a long time to increase the data frequency and reduce the uncertainty related to climate variability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spring完成签到,获得积分10
1秒前
6秒前
cis2014完成签到,获得积分10
6秒前
白桃完成签到 ,获得积分10
8秒前
cis2014发布了新的文献求助10
9秒前
和平使命应助科研通管家采纳,获得10
11秒前
韭菜完成签到,获得积分20
13秒前
酷酷的安柏完成签到 ,获得积分10
15秒前
木又完成签到 ,获得积分10
15秒前
都要多喝水完成签到,获得积分10
21秒前
韭菜盒子完成签到,获得积分20
25秒前
cinyadane完成签到 ,获得积分10
28秒前
xu完成签到 ,获得积分10
28秒前
开心的人杰完成签到,获得积分10
28秒前
葫芦芦芦完成签到 ,获得积分10
28秒前
zhangjw完成签到 ,获得积分10
32秒前
史小刀完成签到 ,获得积分10
33秒前
韦老虎完成签到,获得积分20
34秒前
韭黄完成签到,获得积分20
38秒前
John完成签到 ,获得积分10
39秒前
吕小布完成签到,获得积分10
41秒前
韦老虎发布了新的文献求助10
43秒前
Tysonqu完成签到,获得积分10
45秒前
xiaofenzi完成签到,获得积分10
46秒前
51秒前
yang完成签到 ,获得积分10
53秒前
喵喵完成签到 ,获得积分10
53秒前
韦老虎发布了新的文献求助30
57秒前
吴宵发布了新的文献求助200
57秒前
没有银完成签到,获得积分10
1分钟前
清秀的仙人掌完成签到,获得积分10
1分钟前
hutian完成签到,获得积分10
1分钟前
1分钟前
jkaaa完成签到,获得积分10
1分钟前
。。完成签到 ,获得积分10
1分钟前
sciforce完成签到,获得积分10
1分钟前
652183758完成签到 ,获得积分10
1分钟前
犹豫的若完成签到,获得积分20
1分钟前
serenity完成签到 ,获得积分10
1分钟前
janice116688完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
More activities for teaching positive psychology: A guide for instructors 700
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3402260
求助须知:如何正确求助?哪些是违规求助? 3009063
关于积分的说明 8834864
捐赠科研通 2696069
什么是DOI,文献DOI怎么找? 1477690
科研通“疑难数据库(出版商)”最低求助积分说明 683227
邀请新用户注册赠送积分活动 676889