Resting‐State fMRI: Emerging Concepts for Future Clinical Application

静息状态功能磁共振成像 信号(编程语言) 计算机科学 功能磁共振成像 组分(热力学) 独立成分分析 模式识别(心理学) 神经科学 人工智能 心理学 物理 热力学 程序设计语言
作者
Shiori Amemiya,Hidemasa Takao,Osamu Abe
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (4): 1135-1148 被引量:12
标识
DOI:10.1002/jmri.28894
摘要

Resting‐state functional magnetic resonance imaging (rsfMRI) has been developed as a method of investigating spontaneous neural activity. Based on its low‐frequency signal synchronization, rsfMRI has made it possible to identify multiple macroscopic structures termed resting‐state networks (RSNs) on a single scan of less than 10 minutes. It is easy to implement even in clinical practice, in which assigning tasks to patients can be challenging. These advantages have accelerated the adoption and growth of rsfMRI. Recently, studies on the global rsfMRI signal have attracted increasing attention. Because it primarily arises from physiological events, less attention has hitherto been paid to the global signal than to the local network (i.e., RSN) component. However, the global signal is not a mere nuisance or a subsidiary component. On the contrary, it is quantitatively the dominant component that accounts for most of the variance in the rsfMRI signal throughout the brain and provides rich information on local hemodynamics that can serve as an individual‐level diagnostic biomarker. Moreover, spatiotemporal analyses of the global signal have revealed that it is closely and fundamentally associated with the organization of RSNs, thus challenging the basic assumptions made in conventional rsfMRI analyses and views on RSNs. This review introduces new concepts emerging from rsfMRI spatiotemporal analyses focusing on the global signal and discusses how they may contribute to future clinical medicine. Evidence Level 5 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
刚刚
皛皛完成签到 ,获得积分10
2秒前
3秒前
华仔应助mint采纳,获得10
4秒前
5秒前
5秒前
Sencetich完成签到 ,获得积分10
5秒前
5秒前
丘比特应助风华正茂LC采纳,获得10
6秒前
华仔应助陈胖虎采纳,获得10
6秒前
JamesPei应助蔡佰航采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
研友_Z14Yln应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
一一应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
轻松的鸿应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
研友_Z14Yln应助科研通管家采纳,获得10
8秒前
子车茗应助科研通管家采纳,获得10
8秒前
tramp应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
tramp应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462367
求助须知:如何正确求助?哪些是违规求助? 3055905
关于积分的说明 9049830
捐赠科研通 2745482
什么是DOI,文献DOI怎么找? 1506365
科研通“疑难数据库(出版商)”最低求助积分说明 696092
邀请新用户注册赠送积分活动 695620