Rotating box multi-objective visual tracking algorithm for vibration displacement measurement of large-span flexible bridges

振动 流离失所(心理学) 人工智能 算法 计算机视觉 计算机科学 质心 角位移 特征(语言学) 工程类 偏移量(计算机科学) 声学 心理学 语言学 哲学 物理 心理治疗师 程序设计语言
作者
Mao Li,Sen Wang,Tao Liu,Xiaoqin Liu,Chang Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:200: 110595-110595 被引量:24
标识
DOI:10.1016/j.ymssp.2023.110595
摘要

Visual displacement measurement methods for flexible structural bodies like large-span bridges has gained wide popularity in recent years, but practical applications still have some limitations. For instance, when acquiring images of large-span flexible bridges at a distance, the slight angular tilt of the detection target due to irregular vibrations can cause extremely serious misfit errors in the displacement curves returned by the vision measurement algorithm. To improve the reliability of vibration displacement measurement of flexible structural bodies, this paper takes the bridge subjected to external excitation in the acquired image sequence as the object of vibration displacement measurement and uses a designed high-precision displacement measurement algorithm for a single-stage rotating target tracking anchor-free box to track the vibration displacement of the target in the flexible structural body. We first extract multi-scale feature information of bridge model image sequences using the improved YOLOv5-s backbone network and combine the Transformer self-attention mechanism with PANet to perform a top-down and bottom-up bi-directional fusion of target feature maps at three different scales to achieve semantic feature fusion of shallow and deep information. Second, the improved Efficient Decoupled Head performs the detection of rotating target centroid offset and bounding box size. Finally, the detected results are passed into the multi-objective tracking algorithm ByteTrack, which strengthens the spatio-temporal correlation between frames and obtains a better-fitting vibration displacement curve. The validation and comparison of traditional visual measurement methods and deep learning measurement methods on cable-stayed bridge models, small arch bridges, and large span bridges show that the vibration displacement trajectories regressed by the algorithm in this paper have the best fit with the actual vibration displacement trajectories, which also verifies that the algorithm in this paper has good potential for engineering applications and implementation space in the field of condition monitoring of flexible structural bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助安静汉堡采纳,获得10
刚刚
缥缈紫寒发布了新的文献求助10
1秒前
Lee发布了新的文献求助10
1秒前
1秒前
di完成签到,获得积分20
1秒前
1秒前
2秒前
所所应助33333采纳,获得10
2秒前
2秒前
grmqgq发布了新的文献求助10
3秒前
LMH完成签到,获得积分10
3秒前
3秒前
4秒前
慕青应助吃葡萄皮采纳,获得10
4秒前
CipherSage应助yy采纳,获得10
5秒前
大气诺言发布了新的文献求助10
6秒前
积极的笙发布了新的文献求助10
6秒前
6秒前
好学发布了新的文献求助10
7秒前
chenghuan发布了新的文献求助10
7秒前
江健玲发布了新的文献求助10
8秒前
飘零的歌手完成签到,获得积分10
10秒前
10秒前
Owen应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
浮浮世世应助科研通管家采纳,获得30
10秒前
领导范儿应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
赘婿应助小小笑笑采纳,获得10
11秒前
11秒前
CodeCraft应助胡力介采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
大个应助Lee采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196363
求助须知:如何正确求助?哪些是违规求助? 4378049
关于积分的说明 13635062
捐赠科研通 4233514
什么是DOI,文献DOI怎么找? 2322324
邀请新用户注册赠送积分活动 1320441
关于科研通互助平台的介绍 1270807