Rotating box multi-objective visual tracking algorithm for vibration displacement measurement of large-span flexible bridges

振动 流离失所(心理学) 人工智能 算法 计算机视觉 计算机科学 质心 角位移 特征(语言学) 工程类 偏移量(计算机科学) 声学 心理学 语言学 哲学 物理 心理治疗师 程序设计语言
作者
Mao Li,Sen Wang,Tao Liu,Xiaoqin Liu,Chang Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110595-110595 被引量:7
标识
DOI:10.1016/j.ymssp.2023.110595
摘要

Visual displacement measurement methods for flexible structural bodies like large-span bridges has gained wide popularity in recent years, but practical applications still have some limitations. For instance, when acquiring images of large-span flexible bridges at a distance, the slight angular tilt of the detection target due to irregular vibrations can cause extremely serious misfit errors in the displacement curves returned by the vision measurement algorithm. To improve the reliability of vibration displacement measurement of flexible structural bodies, this paper takes the bridge subjected to external excitation in the acquired image sequence as the object of vibration displacement measurement and uses a designed high-precision displacement measurement algorithm for a single-stage rotating target tracking anchor-free box to track the vibration displacement of the target in the flexible structural body. We first extract multi-scale feature information of bridge model image sequences using the improved YOLOv5-s backbone network and combine the Transformer self-attention mechanism with PANet to perform a top-down and bottom-up bi-directional fusion of target feature maps at three different scales to achieve semantic feature fusion of shallow and deep information. Second, the improved Efficient Decoupled Head performs the detection of rotating target centroid offset and bounding box size. Finally, the detected results are passed into the multi-objective tracking algorithm ByteTrack, which strengthens the spatio-temporal correlation between frames and obtains a better-fitting vibration displacement curve. The validation and comparison of traditional visual measurement methods and deep learning measurement methods on cable-stayed bridge models, small arch bridges, and large span bridges show that the vibration displacement trajectories regressed by the algorithm in this paper have the best fit with the actual vibration displacement trajectories, which also verifies that the algorithm in this paper has good potential for engineering applications and implementation space in the field of condition monitoring of flexible structural bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
要减肥的chao完成签到,获得积分10
4秒前
4秒前
上官若男应助肥四采纳,获得10
5秒前
lll完成签到,获得积分10
6秒前
6秒前
6秒前
吃一口王俊凯完成签到,获得积分10
7秒前
一叶知秋发布了新的文献求助10
8秒前
狂野电源发布了新的文献求助10
8秒前
9秒前
俊逸芸遥完成签到,获得积分10
10秒前
10秒前
luck发布了新的文献求助10
11秒前
14秒前
幸福的笨天使完成签到 ,获得积分10
15秒前
DukeTao完成签到,获得积分10
17秒前
肥四发布了新的文献求助10
17秒前
17秒前
20秒前
21秒前
难摧发布了新的文献求助10
21秒前
共享精神应助dsaifjs采纳,获得10
21秒前
哈哈2022完成签到,获得积分10
22秒前
孤独树叶完成签到,获得积分10
22秒前
葡萄成熟应助Tabby采纳,获得10
23秒前
超大杯冰摇红莓黑加仑茶完成签到,获得积分10
24秒前
25秒前
haichao1发布了新的文献求助10
25秒前
燕子发布了新的文献求助10
26秒前
26秒前
Devil发布了新的文献求助10
27秒前
可爱以冬发布了新的文献求助10
27秒前
28秒前
28秒前
28秒前
学习完成签到 ,获得积分10
29秒前
思源应助xiamu采纳,获得10
30秒前
30秒前
SS完成签到,获得积分10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244