A hierarchical eco-driving strategy for hybrid electric vehicles via vehicle-to-cloud connectivity

云计算 控制器(灌溉) 粒子群优化 计算机科学 智能交通系统 工程类 土木工程 机器学习 农学 生物 操作系统
作者
Rui Liu,Hui Liu,Shida Nie,Lijin Han,Ningkang Yang
出处
期刊:Energy [Elsevier]
卷期号:281: 128231-128231
标识
DOI:10.1016/j.energy.2023.128231
摘要

The emergence of the intelligent transportation system and cloud computing technology has brought the available traffic information and increasing computing power, which lead to a significant improvement in driving performance. In order to enhance energy economy and mobility simultaneously, a hierarchical eco-driving strategy is proposed in this paper, which is comprised of the cloud-level controller and the vehicle-level controller. The dynamic programming-based cloud-level controller optimizes the velocity and battery state-of-charge utilizing the global traffic information obtained from the intelligent transportation system. However, the global traffic information suffers from uncertainties, which deteriorates the effectiveness of the cloud-level controller. The vehicle-level controller is constructed on the model predictive control framework, aiming to cope with the uncertainties, improve fuel economy and reduce travel time. Besides, a transfer learning-based particle swarm optimization algorithm is presented for solving the optimization problem in model predictive control, which can achieve great control performance utilizing the knowledge from the cloud-level controller. To validate the effectiveness of the proposed strategy, simulation tests are conducted. The results demonstrate that the proposed strategy can achieve near-global-optimal performance in fuel economy and mobility. Moreover, the real-time performance of the proposed strategy is validated through the hardware-in-loop test.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yyyyy留下了新的社区评论
2秒前
潘潘完成签到,获得积分10
6秒前
乐天生完成签到,获得积分10
7秒前
lxxxx完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
G1997完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
sandyleung完成签到,获得积分10
23秒前
Sheng完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
28秒前
rsdggsrser完成签到 ,获得积分10
32秒前
中恐完成签到,获得积分0
33秒前
科研辣鸡完成签到,获得积分20
33秒前
36秒前
我要看文献完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
画龙点睛完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
40秒前
勤奋完成签到 ,获得积分10
41秒前
42秒前
42秒前
42秒前
42秒前
Owen应助科研通管家采纳,获得10
42秒前
Owen应助科研通管家采纳,获得10
42秒前
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
42秒前
mark33442完成签到,获得积分10
42秒前
42秒前
42秒前
42秒前
42秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773300
求助须知:如何正确求助?哪些是违规求助? 5609636
关于积分的说明 15430839
捐赠科研通 4905843
什么是DOI,文献DOI怎么找? 2639857
邀请新用户注册赠送积分活动 1587764
关于科研通互助平台的介绍 1542761