A hierarchical eco-driving strategy for hybrid electric vehicles via vehicle-to-cloud connectivity

云计算 控制器(灌溉) 粒子群优化 计算机科学 智能交通系统 工程类 土木工程 机器学习 农学 生物 操作系统
作者
Rui Liu,Hui Liu,Shida Nie,Lijin Han,Ningkang Yang
出处
期刊:Energy [Elsevier]
卷期号:281: 128231-128231
标识
DOI:10.1016/j.energy.2023.128231
摘要

The emergence of the intelligent transportation system and cloud computing technology has brought the available traffic information and increasing computing power, which lead to a significant improvement in driving performance. In order to enhance energy economy and mobility simultaneously, a hierarchical eco-driving strategy is proposed in this paper, which is comprised of the cloud-level controller and the vehicle-level controller. The dynamic programming-based cloud-level controller optimizes the velocity and battery state-of-charge utilizing the global traffic information obtained from the intelligent transportation system. However, the global traffic information suffers from uncertainties, which deteriorates the effectiveness of the cloud-level controller. The vehicle-level controller is constructed on the model predictive control framework, aiming to cope with the uncertainties, improve fuel economy and reduce travel time. Besides, a transfer learning-based particle swarm optimization algorithm is presented for solving the optimization problem in model predictive control, which can achieve great control performance utilizing the knowledge from the cloud-level controller. To validate the effectiveness of the proposed strategy, simulation tests are conducted. The results demonstrate that the proposed strategy can achieve near-global-optimal performance in fuel economy and mobility. Moreover, the real-time performance of the proposed strategy is validated through the hardware-in-loop test.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的问寒举报潘多拉求助涉嫌违规
1秒前
1秒前
ZM完成签到 ,获得积分10
1秒前
zzy完成签到,获得积分10
1秒前
贤君发布了新的文献求助10
1秒前
伍六七发布了新的文献求助10
2秒前
隐形曼青应助lcj采纳,获得10
2秒前
搜集达人应助YOU采纳,获得10
2秒前
qq大魔王发布了新的文献求助10
3秒前
3秒前
依依一一发布了新的文献求助10
4秒前
zz320发布了新的文献求助20
7秒前
8秒前
年轻迪奥发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
华仔应助嘿嘿啊哈采纳,获得10
9秒前
10秒前
10秒前
十七完成签到 ,获得积分10
10秒前
熠旅完成签到,获得积分10
10秒前
11秒前
pluto应助隐形小鸽子采纳,获得10
11秒前
11秒前
12秒前
12333发布了新的文献求助10
13秒前
14秒前
沉静傻姑发布了新的文献求助10
14秒前
小蘑菇应助hyodong采纳,获得10
14秒前
小小户完成签到 ,获得积分10
15秒前
lcj发布了新的文献求助10
15秒前
隐形曼青应助bai采纳,获得10
15秒前
15秒前
16秒前
赎罪发布了新的文献求助50
16秒前
17秒前
刘小蕊发布了新的文献求助10
17秒前
enchyu完成签到 ,获得积分10
18秒前
NexusExplorer应助太阳博士采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167