亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based detection of cervical spondylotic myelopathy using multiple gait parameters

随机森林 支持向量机 矢状面 人工智能 模式识别(心理学) 特征选择 决策树 磁共振成像 计算机科学 步态 冠状面 金标准(测试) 交叉验证 Lasso(编程语言) 降维 医学 放射科 物理医学与康复 万维网
作者
Xinyu Ji,Wei Zeng,Qihang Dai,Yuyan Zhang,Shaoyi Du,Bing Ji
出处
期刊:Biomimetic intelligence and robotics [Elsevier]
卷期号:3 (2): 100103-100103 被引量:1
标识
DOI:10.1016/j.birob.2023.100103
摘要

Cervical spondylotic myelopathy (CSM) is the main cause of adult spinal cord dysfunction, mostly appearing in middle-aged and elderly patients. Currently, the diagnosis of this condition depends mainly on the available imaging tools such as X-ray, computed tomography and magnetic resonance imaging (MRI), of which MRI is the gold standard for clinical diagnosis. However, MRI data cannot clearly demonstrate the dynamic characteristics of CSM, and the overall process is far from cost-efficient. Therefore, this study proposes a new method using multiple gait parameters and shallow classifiers to dynamically detect the occurrence of CSM. In the present study, 45 patients with CSM and 45 age-matched asymptomatic healthy controls (HCs) were recruited, and a three-dimensional (3D) motion capture system was utilized to capture the locomotion data. Furthermore, 63 spatiotemporal, kinematic, and nonlinear parameters were extracted, including lower limb joint angles in the sagittal, coronal, and transverse planes. Then, the Shapley Additive exPlanations (SHAP) value was utilized for feature selection and reduction of the dimensionality of features, and five traditional shallow classifiers, including support vector machine (SVM), logistic regression (LR), k-nearest neighbor (KNN), decision tree (DT), and random forest (RF), were used to classify gait patterns between CSM patients and HCs. On the basis of the 10-fold cross-validation method, the highest average accuracy was achieved by SVM (95.56%). Our results demonstrated that the proposed method could effectively detect CSM and thus serve as an automated auxiliary tool for the clinical diagnosis of CSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
18秒前
lhappy233发布了新的文献求助30
24秒前
29秒前
lhappy233完成签到,获得积分10
31秒前
1分钟前
碗在水中央完成签到 ,获得积分0
2分钟前
2分钟前
Zheng完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
vitamin完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
研友_LkD29n完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
Andy_2024应助狂野果汁采纳,获得10
9分钟前
10分钟前
10分钟前
狂野果汁发布了新的文献求助10
10分钟前
11分钟前
11分钟前
11分钟前
11分钟前
12分钟前
zsmj23完成签到 ,获得积分0
12分钟前
12分钟前
Adi完成签到,获得积分10
12分钟前
12分钟前
丸子鱼完成签到 ,获得积分10
12分钟前
貔貅完成签到 ,获得积分10
13分钟前
13分钟前
13分钟前
13分钟前
14分钟前
14分钟前
科研通AI2S应助奥沙利楠采纳,获得10
14分钟前
15分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372870
求助须知:如何正确求助?哪些是违规求助? 2990412
关于积分的说明 8740993
捐赠科研通 2674088
什么是DOI,文献DOI怎么找? 1464863
科研通“疑难数据库(出版商)”最低求助积分说明 677681
邀请新用户注册赠送积分活动 669092