Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications

计算机科学 峰度 模式识别(心理学) 人工智能 脑-机接口 特征选择 支持向量机 脑电图 特征提取 线性判别分析 相关性 典型相关 偏斜 相互信息 数学 统计 心理学 几何学 精神科
作者
Muhammad Umair Ali,Amad Zafar,Karam Dad Kallu,Haris Masood,Malik Muhammad Naeem Mannan,Malik Muhammad Ibrahim,Sangil Kim,Muhammad Attique Khan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/jbhi.2023.3294586
摘要

The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis) The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
hhc发布了新的文献求助10
4秒前
654-2完成签到,获得积分10
5秒前
6秒前
jiang发布了新的文献求助10
8秒前
深情安青应助wise111采纳,获得10
8秒前
感动归尘发布了新的文献求助10
9秒前
EarholeDoctor完成签到,获得积分10
9秒前
小二郎应助下文献采纳,获得10
9秒前
甜甜玫瑰应助崔大胖采纳,获得10
10秒前
mumu完成签到,获得积分10
11秒前
WY完成签到 ,获得积分10
13秒前
下文献发布了新的文献求助10
14秒前
14秒前
15秒前
BBBBB完成签到,获得积分10
15秒前
17秒前
Pity发布了新的文献求助10
19秒前
缥缈八宝粥完成签到,获得积分10
19秒前
思源应助博博儿采纳,获得10
19秒前
xiaosi发布了新的文献求助30
19秒前
jiang完成签到,获得积分10
20秒前
李健的小迷弟应助GGBond采纳,获得10
21秒前
22秒前
研友_gnv61n完成签到,获得积分0
23秒前
25秒前
KitasanHN发布了新的文献求助10
25秒前
张好好完成签到,获得积分10
26秒前
香蕉觅云应助七盘西采纳,获得10
27秒前
NexusExplorer应助hhc采纳,获得10
27秒前
28秒前
29秒前
张好好发布了新的文献求助10
29秒前
一一一发布了新的文献求助10
30秒前
shhyyds发布了新的文献求助10
31秒前
Hello应助土子采纳,获得10
32秒前
35秒前
光北发布了新的文献求助10
36秒前
大西瓜完成签到 ,获得积分10
37秒前
啊南完成签到,获得积分10
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329329
求助须知:如何正确求助?哪些是违规求助? 2959023
关于积分的说明 8593998
捐赠科研通 2637470
什么是DOI,文献DOI怎么找? 1443549
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656146