计算机科学
峰度
模式识别(心理学)
人工智能
脑-机接口
特征选择
支持向量机
脑电图
特征提取
线性判别分析
相关性
典型相关
偏斜
相互信息
数学
统计
心理学
几何学
精神科
作者
Muhammad Umair Ali,Amad Zafar,Karam Dad Kallu,Haris Masood,Malik Muhammad Naeem Mannan,Malik Muhammad Ibrahim,Sangil Kim,Muhammad Attique Khan
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-10
被引量:2
标识
DOI:10.1109/jbhi.2023.3294586
摘要
The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis) The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI