Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications

计算机科学 模式识别(心理学) 人工智能 脑-机接口 特征选择 脑电图 特征(语言学) 相关性 频道(广播) 滤波器(信号处理) 语音识别 计算机视觉 数学 神经科学 电信 几何学 哲学 语言学 心理学
作者
Muhammad Umair Ali,Amad Zafar,Karam Dad Kallu,Haris Masood,Malik Muhammad Naeem Mannan,Malik Muhammad Ibrahim,Sangil Kim,Muhammad Attique Khan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3361-3370 被引量:11
标识
DOI:10.1109/jbhi.2023.3294586
摘要

The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain–computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis) The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助阿克66采纳,获得10
刚刚
CodeCraft应助LuoYR@SZU采纳,获得10
1秒前
1秒前
Cici发布了新的文献求助10
1秒前
snow_dragon完成签到 ,获得积分10
3秒前
3秒前
4秒前
Owen应助好运小陈采纳,获得10
5秒前
5秒前
维尼发布了新的文献求助10
5秒前
科目三应助小肉包采纳,获得30
6秒前
milly发布了新的文献求助10
7秒前
希望天下0贩的0应助wddsf采纳,获得10
8秒前
SciGPT应助lxc采纳,获得10
8秒前
小白白发布了新的文献求助10
9秒前
撸撸大仙发布了新的文献求助10
9秒前
山河与海发布了新的文献求助10
11秒前
赘婿应助yshog采纳,获得10
11秒前
小二郎应助yuaasusanaann采纳,获得10
12秒前
12秒前
Onetwothree完成签到 ,获得积分10
16秒前
17秒前
小狗发布了新的文献求助30
17秒前
wfx完成签到,获得积分10
17秒前
17秒前
打打应助luckin9采纳,获得10
18秒前
雪山飞龙发布了新的文献求助10
18秒前
19秒前
20秒前
yu发布了新的文献求助10
21秒前
深情安青应助王星星采纳,获得10
23秒前
sl完成签到,获得积分10
24秒前
小肉包发布了新的文献求助30
25秒前
科研通AI2S应助游侠客采纳,获得10
25秒前
YYA完成签到 ,获得积分10
25秒前
26秒前
小二郎应助傻傻的仙人掌采纳,获得10
27秒前
_ban完成签到 ,获得积分10
27秒前
29秒前
温莉发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999817
求助须知:如何正确求助?哪些是违规求助? 3539272
关于积分的说明 11276402
捐赠科研通 3277909
什么是DOI,文献DOI怎么找? 1807781
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142