Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications

计算机科学 模式识别(心理学) 人工智能 脑-机接口 特征选择 脑电图 特征(语言学) 相关性 频道(广播) 滤波器(信号处理) 语音识别 计算机视觉 数学 神经科学 电信 语言学 心理学 几何学 哲学
作者
Muhammad Umair Ali,Amad Zafar,Karam Dad Kallu,Haris Masood,Malik Muhammad Naeem Mannan,Malik Muhammad Ibrahim,Sangil Kim,Muhammad Attique Khan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3361-3370 被引量:15
标识
DOI:10.1109/jbhi.2023.3294586
摘要

The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain–computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis) The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初步完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
猪猪hero发布了新的文献求助10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
rebubu应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得30
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
直率代荷应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
不二子发布了新的文献求助10
5秒前
6秒前
6秒前
pancake发布了新的文献求助10
6秒前
务实的南露完成签到,获得积分10
8秒前
打打应助棋士采纳,获得10
8秒前
8秒前
yang完成签到,获得积分10
9秒前
咸鱼完成签到 ,获得积分10
11秒前
11秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
脑洞疼应助陈塘关守将采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694202
求助须知:如何正确求助?哪些是违规求助? 5096252
关于积分的说明 15213274
捐赠科研通 4850853
什么是DOI,文献DOI怎么找? 2602038
邀请新用户注册赠送积分活动 1553878
关于科研通互助平台的介绍 1511814