Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications

计算机科学 模式识别(心理学) 人工智能 脑-机接口 特征选择 脑电图 特征(语言学) 相关性 频道(广播) 滤波器(信号处理) 语音识别 计算机视觉 数学 神经科学 电信 语言学 心理学 几何学 哲学
作者
Muhammad Umair Ali,Amad Zafar,Karam Dad Kallu,Haris Masood,Malik Muhammad Naeem Mannan,Malik Muhammad Ibrahim,Sangil Kim,Muhammad Attique Khan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3361-3370 被引量:15
标识
DOI:10.1109/jbhi.2023.3294586
摘要

The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain–computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis) The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
是个哑巴完成签到,获得积分10
1秒前
啦啦啦发布了新的文献求助10
2秒前
彩色的舞蹈完成签到,获得积分10
2秒前
跳跃小伙发布了新的文献求助100
3秒前
3秒前
蓝天发布了新的文献求助10
3秒前
狐妖完成签到,获得积分10
3秒前
4秒前
Tingting发布了新的文献求助10
5秒前
Cole完成签到,获得积分10
5秒前
埋头赶路完成签到,获得积分10
6秒前
温乐松发布了新的文献求助10
6秒前
差差你在干什么完成签到,获得积分10
7秒前
pretty完成签到 ,获得积分10
7秒前
天天快乐应助墨小菊采纳,获得10
7秒前
一亩蔬菜发布了新的文献求助10
8秒前
耶喽小黄完成签到,获得积分10
8秒前
9秒前
9秒前
lavande发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
Cookie发布了新的文献求助10
12秒前
是个哑巴发布了新的文献求助10
12秒前
lty完成签到,获得积分10
12秒前
蔡蔡完成签到 ,获得积分10
12秒前
JamesPei应助吃薯条采纳,获得10
13秒前
13秒前
Udo发布了新的文献求助10
14秒前
Xgg完成签到 ,获得积分10
16秒前
xueshu发布了新的文献求助10
17秒前
17秒前
Zzz发布了新的文献求助20
17秒前
Pom完成签到,获得积分10
17秒前
酷波er应助Yuting采纳,获得10
18秒前
18秒前
Cookie完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812