Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications

计算机科学 模式识别(心理学) 人工智能 脑-机接口 特征选择 脑电图 特征(语言学) 相关性 频道(广播) 滤波器(信号处理) 语音识别 计算机视觉 数学 神经科学 电信 语言学 心理学 几何学 哲学
作者
Muhammad Umair Ali,Amad Zafar,Karam Dad Kallu,Haris Masood,Malik Muhammad Naeem Mannan,Malik Muhammad Ibrahim,Sangil Kim,Muhammad Attique Khan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3361-3370 被引量:15
标识
DOI:10.1109/jbhi.2023.3294586
摘要

The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain–computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis) The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
听风完成签到 ,获得积分10
1秒前
1秒前
王修强发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
ESLG发布了新的文献求助10
2秒前
贪玩翎完成签到,获得积分10
2秒前
why完成签到,获得积分10
2秒前
好好好完成签到,获得积分10
2秒前
磊哥1233发布了新的文献求助10
3秒前
3秒前
子车一手完成签到,获得积分10
4秒前
愉快迎南完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
76542cu发布了新的文献求助10
6秒前
yjy完成签到,获得积分10
6秒前
汉堡包应助Yddear采纳,获得20
6秒前
Zerolucky关注了科研通微信公众号
6秒前
丘比特应助xin采纳,获得10
6秒前
不吃香菜发布了新的文献求助10
6秒前
ada发布了新的文献求助10
7秒前
sss发布了新的文献求助30
7秒前
zhenghua发布了新的文献求助10
7秒前
田様应助cijing采纳,获得10
7秒前
Aurora发布了新的文献求助10
7秒前
8秒前
8秒前
Naomi发布了新的文献求助10
8秒前
黄瑞澳完成签到,获得积分20
9秒前
浮游应助zxzxzxzx采纳,获得10
9秒前
yjy发布了新的文献求助10
9秒前
鲁卓林发布了新的文献求助10
9秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239828
求助须知:如何正确求助?哪些是违规求助? 4407067
关于积分的说明 13717174
捐赠科研通 4275655
什么是DOI,文献DOI怎么找? 2346104
邀请新用户注册赠送积分活动 1343227
关于科研通互助平台的介绍 1301291