SiamBAG: Band Attention Grouping-Based Siamese Object Tracking Network for Hyperspectral Videos

人工智能 高光谱成像 计算机科学 计算机视觉 模式识别(心理学) 视频跟踪 对象(语法) 目标检测 跟踪(教育) 职位(财务) 深度学习 心理学 教育学 财务 经济
作者
Wei Li,Zengfu Hou,Jun Zhou,Ran Tao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:35
标识
DOI:10.1109/tgrs.2023.3285802
摘要

A hyperspectral video contains frames with numerous spectral bands, providing fine reflectance information for object identification and tracking. Enriched features can be learned from spectral-spatial data using deep learning models. However, due to the difficulty in hyperspectral video collection, deep model training is often insufficient, causing reduced performance during the testing stage. To address this issue, we present a novel Band Attention Grouping-based Siamese framework (SiamBAG) for hyperspectral object tracking. SiamBAG employs massive color object tracking data to train a deep neural network. Band weights obtained by band attention module are used to group a hyperspectral image into multiple three-channel false-color images with approximate total group weights. Then multiple enhanced images obtained by histogram equalization are fed to the proposed SiamBAG network to generate a classification branch, a regression branch and a scale tuning branch. In the classification branch, the response maps of multiple groups are fused by regularized group weights to estimate the position of objects. Then the regression branch is used to obtain the initial object position of objects. The position offsets are fed back to the scale tune branch to relocate and fine-tune the object position by exploiting the similarity between template features and detection features. Experimental results demonstrate that the proposed tracker achieves superior tracking performance than other methods. The source codes of this paper will be released at https://github.com/zephyrhours/Hyperspectral-Object-Tracking-SiamBAG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动的雁枫完成签到,获得积分10
刚刚
1秒前
Alkaid完成签到,获得积分10
2秒前
2秒前
杨乃彬完成签到,获得积分10
3秒前
3秒前
callit完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
jundongfan完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
希望天下0贩的0应助zw采纳,获得10
4秒前
小二郎应助DAL采纳,获得10
4秒前
物华弥新完成签到 ,获得积分10
7秒前
英姑应助雾语采纳,获得10
7秒前
落寞的又菡完成签到,获得积分10
7秒前
脑洞疼应助大气摩托采纳,获得10
7秒前
shijie805发布了新的文献求助10
7秒前
7秒前
碧球发布了新的文献求助10
8秒前
陌然浅笑完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
了一李应助flora采纳,获得10
8秒前
可爱的弘文完成签到,获得积分20
9秒前
科研通AI6应助蕾蕾采纳,获得10
10秒前
11秒前
科研通AI6应助牛牛很忙呀采纳,获得10
12秒前
12秒前
12秒前
elf发布了新的文献求助10
12秒前
小管发布了新的文献求助10
12秒前
Ayao完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666053
求助须知:如何正确求助?哪些是违规求助? 4879128
关于积分的说明 15116083
捐赠科研通 4825220
什么是DOI,文献DOI怎么找? 2583153
邀请新用户注册赠送积分活动 1537198
关于科研通互助平台的介绍 1495512