SiamBAG: Band Attention Grouping-Based Siamese Object Tracking Network for Hyperspectral Videos

人工智能 高光谱成像 计算机科学 计算机视觉 模式识别(心理学) 视频跟踪 对象(语法) 目标检测 跟踪(教育) 职位(财务) 深度学习 财务 心理学 教育学 经济
作者
Wei Li,Zengfu Hou,Jun Zhou,Ran Tao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:9
标识
DOI:10.1109/tgrs.2023.3285802
摘要

A hyperspectral video contains frames with numerous spectral bands, providing fine reflectance information for object identification and tracking. Enriched features can be learned from spectral-spatial data using deep learning models. However, due to the difficulty in hyperspectral video collection, deep model training is often insufficient, causing reduced performance during the testing stage. To address this issue, we present a novel Band Attention Grouping-based Siamese framework (SiamBAG) for hyperspectral object tracking. SiamBAG employs massive color object tracking data to train a deep neural network. Band weights obtained by band attention module are used to group a hyperspectral image into multiple three-channel false-color images with approximate total group weights. Then multiple enhanced images obtained by histogram equalization are fed to the proposed SiamBAG network to generate a classification branch, a regression branch and a scale tuning branch. In the classification branch, the response maps of multiple groups are fused by regularized group weights to estimate the position of objects. Then the regression branch is used to obtain the initial object position of objects. The position offsets are fed back to the scale tune branch to relocate and fine-tune the object position by exploiting the similarity between template features and detection features. Experimental results demonstrate that the proposed tracker achieves superior tracking performance than other methods. The source codes of this paper will be released at https://github.com/zephyrhours/Hyperspectral-Object-Tracking-SiamBAG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柠檬完成签到 ,获得积分10
2秒前
骆展羽完成签到 ,获得积分10
3秒前
dzc完成签到,获得积分20
3秒前
星辰大海应助lignin采纳,获得10
4秒前
zdq10068发布了新的文献求助10
5秒前
cheng完成签到,获得积分10
7秒前
敏敏敏呐完成签到,获得积分10
7秒前
7秒前
yydragen应助孙朱珠采纳,获得10
7秒前
大模型应助笨笨的曼文采纳,获得10
8秒前
8秒前
里lilili完成签到,获得积分10
10秒前
10秒前
吴嘉俊发布了新的文献求助10
10秒前
落寞飞烟完成签到,获得积分10
11秒前
11秒前
琳毓完成签到 ,获得积分10
12秒前
时尚战斗机应助阔达苡采纳,获得10
12秒前
13秒前
褚洙完成签到,获得积分0
13秒前
zdq10068完成签到,获得积分10
15秒前
派大星和海绵宝宝完成签到,获得积分10
15秒前
风中远山完成签到,获得积分10
15秒前
dd发布了新的文献求助30
15秒前
Ava应助kk采纳,获得10
16秒前
琳毓关注了科研通微信公众号
16秒前
17秒前
19秒前
坐以待币完成签到 ,获得积分10
20秒前
xiaoyan.yao发布了新的文献求助10
20秒前
lignin发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
23秒前
neil_match完成签到,获得积分10
24秒前
26秒前
ommphey发布了新的文献求助30
28秒前
weing发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689