DialogMCF: Multimodal Context Flow for Audio Visual Scene-Aware Dialog

计算机科学 对话框 任务(项目管理) 背景(考古学) 多通道交互 多模态 信息流 人工智能 模态(人机交互) 语音识别 人机交互 自然语言处理 多媒体 万维网 语言学 古生物学 哲学 管理 经济 生物
作者
Zhe Chen,Hongcheng Liu,Yu Wang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 753-764 被引量:4
标识
DOI:10.1109/taslp.2023.3284511
摘要

In recent years, Audio Visual Scene-Aware Dialog (AVSD) has been an active research task in the multimodal dialogue community and has also been a core part of the Dialog System Technology Challenge (DSTC). This task is an extension of conventional visual question answering, where video-relevant answers must be generated taking into account multimodal contextual information from previous dialogue rounds. Despite recent advances in the AVSD task, there are still two major challenges in developing such a system: how to model the multimodal contextual information of multiple rounds of dialogues and how to integrate audio-visual information into the generation of textual responses. To tackle these two challenges, in this paper we propose a novel model, named DialogMCF, which constructs a multimodal context flow model to generate responses that are relevant to video scenes. This proposed context flow modeling can track the dynamics of the topic information across multiple rounds of dialogue history. To achieve an effective fusion of multimodal information, we propose an audio-visual memory network with cross-modality aligned features to model long multimodal dialogue context, and thus enhance the flow modeling. Furthermore, we make attempts to improve the performance of the proposed DialogMCF model with manual descriptions and explore the incorporation of temporal reasoning information. Extensive experiments on the DSTC AVSD datasets show that, compared to a range of baseline methods, the proposed method can yield state-of-art dialogue generation performance on most metrics when integrating the video descriptions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaodusb完成签到 ,获得积分10
1秒前
天天快乐应助温柔柜子采纳,获得10
3秒前
Criminology34应助oleskarabach采纳,获得10
3秒前
Starwalker应助科研同人采纳,获得30
3秒前
量子星尘发布了新的文献求助10
5秒前
入变发布了新的文献求助10
5秒前
7秒前
7秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
ylkylk关注了科研通微信公众号
10秒前
10秒前
所所应助积极璎采纳,获得10
12秒前
HesperLxy完成签到,获得积分20
12秒前
13秒前
叽里咕噜发布了新的文献求助10
13秒前
Yuan完成签到,获得积分10
14秒前
sinlar发布了新的文献求助10
14秒前
QUPY发布了新的文献求助10
15秒前
15秒前
善学以致用应助健达采纳,获得10
15秒前
16秒前
HesperLxy发布了新的文献求助10
16秒前
16秒前
海丽完成签到,获得积分10
16秒前
科研通AI6.1应助高天雨采纳,获得10
17秒前
17秒前
NexusExplorer应助粗暴的大门采纳,获得10
17秒前
Akim应助二狗采纳,获得10
17秒前
刘立凡发布了新的文献求助10
18秒前
18秒前
祁梦完成签到 ,获得积分10
18秒前
19秒前
方东完成签到,获得积分10
20秒前
小二郎应助杏杏采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382