DialogMCF: Multimodal Context Flow for Audio Visual Scene-Aware Dialog

计算机科学 对话框 任务(项目管理) 背景(考古学) 多通道交互 多模态 信息流 人工智能 模态(人机交互) 语音识别 人机交互 自然语言处理 多媒体 万维网 语言学 古生物学 哲学 管理 经济 生物
作者
Zhe Chen,Hongcheng Liu,Yu Wang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 753-764 被引量:4
标识
DOI:10.1109/taslp.2023.3284511
摘要

In recent years, Audio Visual Scene-Aware Dialog (AVSD) has been an active research task in the multimodal dialogue community and has also been a core part of the Dialog System Technology Challenge (DSTC). This task is an extension of conventional visual question answering, where video-relevant answers must be generated taking into account multimodal contextual information from previous dialogue rounds. Despite recent advances in the AVSD task, there are still two major challenges in developing such a system: how to model the multimodal contextual information of multiple rounds of dialogues and how to integrate audio-visual information into the generation of textual responses. To tackle these two challenges, in this paper we propose a novel model, named DialogMCF, which constructs a multimodal context flow model to generate responses that are relevant to video scenes. This proposed context flow modeling can track the dynamics of the topic information across multiple rounds of dialogue history. To achieve an effective fusion of multimodal information, we propose an audio-visual memory network with cross-modality aligned features to model long multimodal dialogue context, and thus enhance the flow modeling. Furthermore, we make attempts to improve the performance of the proposed DialogMCF model with manual descriptions and explore the incorporation of temporal reasoning information. Extensive experiments on the DSTC AVSD datasets show that, compared to a range of baseline methods, the proposed method can yield state-of-art dialogue generation performance on most metrics when integrating the video descriptions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苯环超人完成签到,获得积分10
1秒前
2秒前
2秒前
李珅玥发布了新的文献求助30
3秒前
斯文败类应助闫111采纳,获得10
3秒前
wure10发布了新的文献求助20
4秒前
完美世界应助Jun采纳,获得10
4秒前
小白发布了新的文献求助10
4秒前
5秒前
粉蒸肉完成签到,获得积分10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
陈永伟发布了新的文献求助10
7秒前
9秒前
binru完成签到,获得积分10
10秒前
11秒前
机灵柚子应助科研通管家采纳,获得10
11秒前
11秒前
机灵柚子应助科研通管家采纳,获得10
11秒前
11秒前
无zzz的人发布了新的文献求助10
11秒前
11秒前
11秒前
Catherine应助科研通管家采纳,获得10
11秒前
11秒前
Wind应助科研通管家采纳,获得10
11秒前
Catherine应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
Wind应助科研通管家采纳,获得10
12秒前
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778000
求助须知:如何正确求助?哪些是违规求助? 5637300
关于积分的说明 15447541
捐赠科研通 4909938
什么是DOI,文献DOI怎么找? 2642010
邀请新用户注册赠送积分活动 1589927
关于科研通互助平台的介绍 1544398