DialogMCF: Multimodal Context Flow for Audio Visual Scene-Aware Dialog

计算机科学 对话框 任务(项目管理) 背景(考古学) 多通道交互 多模态 信息流 人工智能 模态(人机交互) 语音识别 人机交互 自然语言处理 多媒体 万维网 语言学 古生物学 哲学 管理 经济 生物
作者
Zhe Chen,Hongcheng Liu,Yu Wang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 753-764 被引量:4
标识
DOI:10.1109/taslp.2023.3284511
摘要

In recent years, Audio Visual Scene-Aware Dialog (AVSD) has been an active research task in the multimodal dialogue community and has also been a core part of the Dialog System Technology Challenge (DSTC). This task is an extension of conventional visual question answering, where video-relevant answers must be generated taking into account multimodal contextual information from previous dialogue rounds. Despite recent advances in the AVSD task, there are still two major challenges in developing such a system: how to model the multimodal contextual information of multiple rounds of dialogues and how to integrate audio-visual information into the generation of textual responses. To tackle these two challenges, in this paper we propose a novel model, named DialogMCF, which constructs a multimodal context flow model to generate responses that are relevant to video scenes. This proposed context flow modeling can track the dynamics of the topic information across multiple rounds of dialogue history. To achieve an effective fusion of multimodal information, we propose an audio-visual memory network with cross-modality aligned features to model long multimodal dialogue context, and thus enhance the flow modeling. Furthermore, we make attempts to improve the performance of the proposed DialogMCF model with manual descriptions and explore the incorporation of temporal reasoning information. Extensive experiments on the DSTC AVSD datasets show that, compared to a range of baseline methods, the proposed method can yield state-of-art dialogue generation performance on most metrics when integrating the video descriptions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MWT完成签到,获得积分10
刚刚
卢街娃儿发布了新的文献求助10
1秒前
slin_sjtu完成签到,获得积分10
1秒前
清新的一笑完成签到,获得积分10
2秒前
2秒前
vily完成签到,获得积分10
2秒前
123456789999发布了新的文献求助10
2秒前
zqingqing完成签到,获得积分10
2秒前
3秒前
Gin_发布了新的文献求助10
3秒前
ddstty完成签到,获得积分10
3秒前
3秒前
ruby完成签到,获得积分10
3秒前
忧子忘完成签到,获得积分10
3秒前
大枣儿完成签到,获得积分10
3秒前
Owen应助黑色幽默采纳,获得10
3秒前
科研牛马发布了新的文献求助10
4秒前
yjq完成签到,获得积分10
4秒前
4秒前
YONG完成签到,获得积分10
4秒前
年华发布了新的文献求助10
4秒前
大模型应助肖不错采纳,获得10
4秒前
粥粥完成签到,获得积分10
6秒前
开心的梦柏完成签到 ,获得积分10
6秒前
6秒前
7秒前
ZJFL发布了新的文献求助10
7秒前
在水一方应助韩野采纳,获得10
7秒前
7秒前
YY完成签到,获得积分10
7秒前
sandse7en完成签到 ,获得积分10
7秒前
7秒前
12345678完成签到,获得积分10
7秒前
六点一横完成签到,获得积分10
8秒前
8秒前
minnie完成签到,获得积分10
8秒前
乐情发布了新的文献求助10
8秒前
仰望完成签到,获得积分10
8秒前
8秒前
yolo完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568600
求助须知:如何正确求助?哪些是违规求助? 4653216
关于积分的说明 14704706
捐赠科研通 4595016
什么是DOI,文献DOI怎么找? 2521450
邀请新用户注册赠送积分活动 1493035
关于科研通互助平台的介绍 1463793