DialogMCF: Multimodal Context Flow for Audio Visual Scene-Aware Dialog

计算机科学 对话框 任务(项目管理) 背景(考古学) 多通道交互 多模态 信息流 人工智能 模态(人机交互) 语音识别 人机交互 自然语言处理 多媒体 万维网 语言学 古生物学 哲学 管理 经济 生物
作者
Zhe Chen,Hongcheng Liu,Yu Wang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 753-764 被引量:4
标识
DOI:10.1109/taslp.2023.3284511
摘要

In recent years, Audio Visual Scene-Aware Dialog (AVSD) has been an active research task in the multimodal dialogue community and has also been a core part of the Dialog System Technology Challenge (DSTC). This task is an extension of conventional visual question answering, where video-relevant answers must be generated taking into account multimodal contextual information from previous dialogue rounds. Despite recent advances in the AVSD task, there are still two major challenges in developing such a system: how to model the multimodal contextual information of multiple rounds of dialogues and how to integrate audio-visual information into the generation of textual responses. To tackle these two challenges, in this paper we propose a novel model, named DialogMCF, which constructs a multimodal context flow model to generate responses that are relevant to video scenes. This proposed context flow modeling can track the dynamics of the topic information across multiple rounds of dialogue history. To achieve an effective fusion of multimodal information, we propose an audio-visual memory network with cross-modality aligned features to model long multimodal dialogue context, and thus enhance the flow modeling. Furthermore, we make attempts to improve the performance of the proposed DialogMCF model with manual descriptions and explore the incorporation of temporal reasoning information. Extensive experiments on the DSTC AVSD datasets show that, compared to a range of baseline methods, the proposed method can yield state-of-art dialogue generation performance on most metrics when integrating the video descriptions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助希希采纳,获得10
刚刚
又夏发布了新的文献求助10
1秒前
唯伊发布了新的文献求助10
1秒前
酌鹿发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
四夕完成签到,获得积分10
3秒前
epsilonN完成签到 ,获得积分10
3秒前
oo完成签到,获得积分10
3秒前
YUAN完成签到,获得积分10
3秒前
正方形劈盐子完成签到,获得积分10
4秒前
4秒前
ArCaaaat完成签到,获得积分10
5秒前
Aliothae完成签到,获得积分10
7秒前
月亮完成签到 ,获得积分10
7秒前
weddcf发布了新的文献求助10
8秒前
8秒前
义气的元绿完成签到,获得积分10
9秒前
ArCaaaat发布了新的文献求助10
9秒前
ding应助吴学仕采纳,获得10
11秒前
汉堡包应助suchui采纳,获得10
12秒前
14秒前
希希发布了新的文献求助10
14秒前
余姓懒完成签到,获得积分10
14秒前
Light完成签到,获得积分10
16秒前
16秒前
善学以致用应助LaLune采纳,获得10
17秒前
又夏完成签到,获得积分10
17秒前
FashionBoy应助明明采纳,获得10
17秒前
往徕完成签到,获得积分10
18秒前
搜集达人应助ziyue采纳,获得10
19秒前
doctorw发布了新的文献求助10
19秒前
20秒前
20秒前
雪白发卡完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
LaInh完成签到,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693989
求助须知:如何正确求助?哪些是违规求助? 5095107
关于积分的说明 15212740
捐赠科研通 4850704
什么是DOI,文献DOI怎么找? 2601931
邀请新用户注册赠送积分活动 1553766
关于科研通互助平台的介绍 1511712