Structure and equation of state of Bi2Sr2Can−1CunO2n+

铜酸盐 材料科学 状态方程 热力学 超导电性 凝聚态物理 衍射 高压 压缩(物理) 物理 量子力学
作者
Alexander C. Mark,Muhtar Ahart,Ravhi S. Kumar,Changyong Park,Yue Meng,Dmitry Popov,Liangzi Deng,C. W. Chu,J. C. Campuzano,Russell J. Hemley
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:7 (6) 被引量:3
标识
DOI:10.1103/physrevmaterials.7.064803
摘要

Pressure is a unique tuning parameter for probing the properties of materials, and it has been particularly useful for studies of electronic materials such as high-temperature cuprate superconductors. Here we report the effects of quasihydrostatic compression produced by a neon pressure medium on the structures of bismuth-based high-Tc cuprate superconductors with the nominal composition Bi2Sr2Can−1CunO2n+4+δ (n=1,2,3) up to 155 GPa. The structures of all three compositions obtained by synchrotron x-ray diffraction can be described as pseudotetragonal over the entire pressure range studied. We show that previously reported pressure-induced distortions and structural changes arise from the large strains that can be induced in these layered materials by nonhydrostatic stresses. The pressure-volume equations of state (EOS) measured under these quasihydrostatic conditions cannot be fit to single phenomenological formulation over the pressure ranges studied, starting below 20 GPa. This intrinsic anomalous compression as well as the sensitivity of Bi2Sr2Can−1CunO2n+4+δ to deviatoric stresses provide explanations for the numerous inconsistencies in reported EOS parameters for these materials. We conclude that the anomalous compressional behavior of all three compositions is a manifestation of the changes in electronic properties that are also responsible for the remarkable nonmonotonic dependence of Tc with pressure, including the increase in Tc at the highest pressures studied so far for each. Transport and spectroscopic measurements up to megabar pressures are needed to fully characterize these cuprates and explore higher possible critical temperatures in these materials.1 MoreReceived 15 December 2022Accepted 5 May 2023DOI:https://doi.org/10.1103/PhysRevMaterials.7.064803©2023 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasEquations of stateHigh-pressure studiesPhysical SystemsCupratesTechniquesX-ray diffractionCondensed Matter, Materials & Applied Physics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助英俊的汉堡采纳,获得10
刚刚
爱静静应助hehe采纳,获得10
1秒前
九城发布了新的文献求助20
1秒前
斯文败类应助高君奇采纳,获得10
1秒前
小二郎应助特兰克斯采纳,获得10
1秒前
mojomars发布了新的文献求助10
1秒前
吃嘛嘛香完成签到,获得积分10
1秒前
wqy发布了新的文献求助10
2秒前
天天快乐应助新的心跳采纳,获得10
2秒前
Orange应助有益采纳,获得10
2秒前
4秒前
爆米花应助marinemiao采纳,获得10
4秒前
4秒前
招财不肥发布了新的文献求助10
5秒前
网安真难T_T完成签到,获得积分10
5秒前
大土豆子完成签到,获得积分10
6秒前
6秒前
甜甜醉波发布了新的文献求助10
7秒前
CodeCraft应助jy采纳,获得10
7秒前
领导范儿应助睡睡采纳,获得10
7秒前
哈哈完成签到 ,获得积分10
8秒前
Holleay123发布了新的文献求助10
9秒前
9秒前
10秒前
苏卿应助kento采纳,获得100
10秒前
小马甲应助满意之玉采纳,获得10
10秒前
11秒前
Jing完成签到,获得积分10
12秒前
饕餮发布了新的文献求助10
12秒前
13秒前
13秒前
wqy完成签到,获得积分10
13秒前
犹豫的戎完成签到,获得积分20
13秒前
狗子完成签到 ,获得积分10
14秒前
CodeCraft应助小小飞采纳,获得10
14秒前
JamesPei应助JUSTs0so采纳,获得10
16秒前
Beth完成签到,获得积分10
16秒前
粥粥发布了新的文献求助10
17秒前
17秒前
庞威完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808