Redox-active “Structural Pillar” molecular doping strategy towards High-Performance polyaniline-based flexible supercapacitors

聚苯胺 超级电容器 支柱 兴奋剂 材料科学 纳米技术 氧化还原 电化学 化学工程 化学 电极 复合材料 光电子学 结构工程 冶金 工程类 聚合物 物理化学 聚合
作者
Wei Ding,Luyi Xiao,Yong Wang,Li‐Ping Lv
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:495: 153505-153505 被引量:2
标识
DOI:10.1016/j.cej.2024.153505
摘要

To coordinate flexibility to electrodes without sacrificing their electrochemical properties is critical for the development of wearable supercapacitors (SCs). Polyaniline (PANI) is well-known pseudocapacitive electrode material due to its high conductivity and different oxidation states upon switchable structures. However, its rigid conjugated backbone and structural instability caused by repeated doping/de-doping during cycling severely impede its utilization in flexible SCs. Herein, we deploy a directional freezing and redox-active "structural pillar" molecular doping strategy to boost PANI-based flexible SCs with high performance. The directional freezing strategy constructs an interconnected 3D honeycomb hydrogel structure with PANI nanofibers, which guarantees fast ion diffusion and electron transport and meanwhile exposes abundant active sites. The large-sized dopant 2-amino-4-bromoanthraquinone-2-sulfonic acid sodium (AQNS) is used as the structural pillar to alleviate the structural instability of PANI during cycling and provides additional pseudocapacitance arising from its redox active quinone groups. Moreover, the negatively charged −SO3− on AQNS can further interact with H+ in the electrolyte to act as an internal proton reservoir, assisting the protonation of –NH- and −N = in PANI to facilitate its charge storage process. Consequently, the PANI-AQNS electrode achieves a high specific capacitance of 578F g−1 at 1 A g−1 and its symmetric SCs exhibit a specific capacitance of 199F g−1 at 0.5 A g−1 with an energy density of 13.61 W h kg−1 at a power density of 175 W kg−1. Upon 2000 cycles of dynamic deformations, the SCs can still maintain above 90 % of the initial capacitance, verifying their excellent flexibility-relevant property.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卑以自牧发布了新的文献求助10
1秒前
顺心的半兰完成签到 ,获得积分20
1秒前
selfevidbet发布了新的文献求助30
1秒前
1秒前
文忉嫣发布了新的文献求助10
1秒前
打工羊完成签到,获得积分10
1秒前
白衣未央完成签到,获得积分10
1秒前
阳光向秋发布了新的文献求助10
1秒前
1秒前
QL应助图苏采纳,获得30
2秒前
2秒前
hy完成签到,获得积分10
2秒前
粗暴的君浩完成签到,获得积分10
2秒前
2秒前
3秒前
大个应助立波采纳,获得10
3秒前
乐乐应助柔弱凡松采纳,获得10
3秒前
4秒前
4秒前
共享精神应助白华苍松采纳,获得10
4秒前
钰宁发布了新的文献求助10
5秒前
5秒前
小神完成签到,获得积分10
6秒前
菠萝炒蛋加饭完成签到 ,获得积分10
6秒前
Eddy完成签到,获得积分20
6秒前
无敌OUT曼完成签到,获得积分10
6秒前
luuuuuing发布了新的文献求助30
7秒前
spring完成签到 ,获得积分10
7秒前
ding应助白衣未央采纳,获得10
7秒前
bkagyin应助饱满小兔子采纳,获得30
7秒前
吨吨喝水发布了新的文献求助10
8秒前
bkagyin应助细心映寒采纳,获得10
8秒前
灬乔发布了新的文献求助30
8秒前
8秒前
8秒前
西西的瓜皮皮完成签到,获得积分20
9秒前
9秒前
善良友安完成签到,获得积分10
10秒前
研友_VZG7GZ应助Xxaaa采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762