Slow Hot-Exciton Cooling and Enhanced Interparticle Excitonic Coupling in HgTe Quantum Dots

量子点 激子 材料科学 联轴节(管道) 比克西顿 凝聚态物理 光电子学 纳米技术 物理 冶金
作者
Kezhou Fan,K.A. Sergeeva,Alexander A. Sergeev,Lu Zhang,Christopher C. S. Chan,Zhuo Li,Xiaoyan Zhong,Stephen V. Kershaw,Junwei Liu,Andrey L. Rogach,Kam Sing Wong
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c05061
摘要

Rapid hot-carrier/exciton cooling constitutes a major loss channel for photovoltaic efficiency. How to decelerate the hot-carrier/exciton relaxation remains a crux for achieving high-performance photovoltaic devices. Here, we demonstrate slow hot-exciton cooling that can be extended to hundreds of picoseconds in colloidal HgTe quantum dots (QDs). The energy loss rate is 1 order of magnitude smaller than bulk inorganic semiconductors, mediated by phonon bottleneck and interband biexciton Auger recombination (BAR) effects, which are both augmented at reduced QD sizes. The two effects are competitive with the emergence of multiple exciton generation. Intriguingly, BAR dominates even under low excitation fluences with a decrease in interparticle distance. Both experimental evidence and numerical evidence reveal that such efficient BAR derives from the tunneling-mediated interparticle excitonic coupling induced by wave function overlap between neighboring HgTe QDs in films. Thus, our study unveils the potential for realizing efficient hot-carrier/exciton solar cells based on HgTe QDs. Fundamentally, we reveal that the delocalized nature of quantum-confined wave function intensifies BAR. The interparticle excitonic coupling may cast light on the development of next-generation photoelectronic materials, which can retain the size-tunable confinement of colloidal semiconductor QDs while simultaneously maintaining high mobilities and conductivities typical for bulk semiconductor materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时笙发布了新的文献求助10
刚刚
4秒前
小蘑菇应助黑色土豆采纳,获得10
4秒前
可靠sue完成签到,获得积分10
5秒前
激情的白枫完成签到 ,获得积分10
8秒前
咕咕发布了新的文献求助10
9秒前
9秒前
慕青应助ningqing采纳,获得10
9秒前
罗里完成签到 ,获得积分10
12秒前
13秒前
13秒前
haisiaa发布了新的文献求助10
16秒前
州府十三发布了新的文献求助10
16秒前
16秒前
科研通AI5应助时笙采纳,获得20
17秒前
亚鹏完成签到,获得积分10
19秒前
fan完成签到,获得积分10
20秒前
咕咕完成签到 ,获得积分10
20秒前
23秒前
23秒前
情怀应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得30
24秒前
大个应助科研通管家采纳,获得10
24秒前
李爱国应助科研通管家采纳,获得10
24秒前
wdy111应助科研通管家采纳,获得10
24秒前
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
chris应助科研通管家采纳,获得20
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
26秒前
彭于晏应助HY采纳,获得10
26秒前
26秒前
26秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176